31 resultados para Time-resolved absorption spectroscopy
Resumo:
We have used transient terahertz photoconductivity measurements to assess the efficacy of two-temperature growth and core-shell encapsulation techniques on the electronic properties of GaAs nanowires. We demonstrate that two-temperature growth of the GaAs core leads to an almost doubling in charge-carrier mobility and a tripling of carrier lifetime. In addition, overcoating the GaAs core with a larger-bandgap material is shown to reduce the density of surface traps by 82%, thereby enhancing the charge conductivity.
Resumo:
The annealing of ion implantation damage in silicon by rapid isothermal heating has been monitored by the time resolved reflectivity (TRR) method. This technique was applied simultaneously at a wavelength of 632. 8nm and also at 1152nm, where the optical absorption coefficient of silicon is less. The two wavelength method simplifies the interpretation of TRR results, extends the measurement depth and allows good resolution of the position of the interface between amorphous and crystalline silicon. The regrowth of amorphous layers in silicon, created by self implantation and implanted with electrically active impurities, was observed. Regrowth in rapid isothermal annealing occurs during the heating up stage of typical thermal cycles. Impurities such as B, P, and As increase the regrowth rate in a manner consistent with a vacancy model for regrowth. The maximum regrowth rate in boron implanted silicon is limited by the solid solubility.
Resumo:
We present full volumetric (three-dimensional) time-resolved (+one-dimensional) measurements of the velocity field in a large water mixing tank, allowing us to assess spatial and temporal rotational energy (enstrophy) and turbulent energy dissipation intermittency. In agreement with previous studies, highly intermittent behavior is observed, with intense coherent flow structures clustering in the periphery of larger vortices. However, further to previous work the full volumetric measurements allow us to separate out the effects of advection from other effects, elucidating not only their topology but also the evolution of these intense events, through the local balance of stretching and diffusion. These findings contribute toward a better understanding of the intermittency phenomenon, which should pave the way for more accurate models of the small-scale motions based on an understanding of the underlying flow physics.