29 resultados para Three-phase 6-pulses diode rectifier
Resumo:
Three-phase induction motors offer significant advantages over commutator motors in some domestic appliances. Models for wide speed range three-phase induction motors for use in a horizontal axis washing machine have been developed using the MEGA finite element package with an external formulation for calculating iron losses. Motor loss predictions have been verified using a novel high accuracy calorimeter. Good agreement has been observed over a wide speed range at different loadings. The model is used to predict motor temperature rise under typical washing machine loading conditions to ensure its limiting temperature is not exceeded and enables alternative designs to be investigated without recourse to physical prototypes. © 2005 IEEE.
Resumo:
The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise as replacement for doublyfed slip-ring generators for wind power applications by offering reduced capital and operational costs due to its brushless operation. In order to facilitate its commercial deployment, the capabilities of the BDFIG system to comply with grid code requirements have to be assessed. This paper, for the first time, studies the performance of the BDFIG under grid fault ride-through and presents the dynamic behaviour of the machine during three-phase symmetrical voltage dips. Both full and partial voltage dips are studied using a vector model. Simulation and experimental results are provided for a 180 frame BDFIG.
Resumo:
We present a moving mesh method suitable for solving two-dimensional and axisymmetric three-liquid flows with triple junction points. This method employs a body-fitted unstructured mesh where the interfaces between liquids are lines of the mesh system, and the triple junction points (if exist) are mesh nodes. To enhance the accuracy and the efficiency of the method, the mesh is constantly adapted to the evolution of the interfaces by refining and coarsening the mesh locally; dynamic boundary conditions on interfaces, in particular the triple points, are therefore incorporated naturally and accurately in a Finite- Element formulation. In order to allow pressure discontinuity across interfaces, double-values of pressure are necessary for interface nodes and triple-values of pressure on triple junction points. The resulting non-linear system of mass and momentum conservation is then solved by an Uzawa method, with the zero resultant condition on triple points reinforced at each time step. The method is used to investigate the rising of a liquid drop with an attached bubble in a lighter liquid.
Resumo:
Using numerical micromagnetics we have studied the ground state magnetization distribution of square planar ferromagnetic elements ("nanostructures"). As the element size is reduced from 250 to 2 nm at constant thickness (2-35 nm), we find that the magnetization distribution undergoes up to three phase transitions involving as many as three different near single domain states. One of these phase transitions is analogous to the reorientation phase transition observed in continuous ultrathin magnetic films. © 1998 American Institute of Physics.
Resumo:
Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure. © 2006 IOP Publishing Ltd.
Resumo:
This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.
Resumo:
This paper presents an investigation into the losses in a three-phase induction motor under different pulse width modulation (PWM) excitation conditions. The impacts of Sinusoidal PWM, Space Vector PWM and Discontinuous PWM on machine loss are compared and studied. Finite element analysis simulations are employed to predict the machine losses with the loss breakdown analysis under different PWM schemes. Direct Calorimetric measurements are utilized to verify the finite element modeling and provide direct quantifications of machine loss under modern PWM techniques. © 2008 IEEE.
Resumo:
The paper presents a vector model for a Brushless Doubly-Fed Machine (BDFM). The BDFM has 4 and 8 pole stator windings and a nested-loop rotor cage. The rotor cage has six nests equally spaced around the circumference and each nest comprises three loops. All the rotor loops are short circuited via a common end-ring at one end. The vector model is derived based on the electrical equations of the machine and appropriate vector transformations. In contrast to the stator, there is no three phase circuit in the rotor. Therefore, the vector transformations suitable for three phase circuits can not be utilised for the rotor circuit. A new vector transformation is employed for the rotor circuit quantities. The approach presented in this paper can be extended for a BDFM with any stator poles combination and any number of loops per nest. Simulation results from the model implemented in Simulink are presented. © 2008 IEEE.