83 resultados para Superficial Gas Velocity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number W e = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20 % of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number We = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20% of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to better understand the stratified combustion, the propagation of flame through stratified mixture field in laminar and turbulent flow conditions has been studied by using combined PIV/PLIF techniques. A great emphasis was placed on developing methods to improve the accuracy of local measurements of flame propagation. In particular, a new PIV approach has been developed to measure the local fresh gas velocity near preheat zone of flame front. To improve the resolution of measurement, the shape of interrogation window has been continuously modified based on the local flame topology and gas expansion effect. Statistical analysis of conditioned local measurements by the local equivalence ratio of flames allows the characterization of the properties of flame propagation subjected to the mixture stratification in laminar and turbulent flows, especially the highlight of the memory effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop. The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when the spark discharge occurs, the air velocity below the igniter in a real combustor is much less strongly correlated to ignition outcome than laboratory studies would suggest. Nevertheless, later flame development and stabilization are largely controlled by the cold flowfield, implying that the location of the igniter may, in the first instance, be selected based on the combustor cold flow. Copyright © 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instability triggering and transient growth of thermoacoustic oscillations were experimentally investigated in combination with linear/nonlinear flame transfer function (FTF) methodology in a model lean-premixed gas turbine combustor operated with CH 4 and air at atmospheric pressure. A fully premixed flame with 10kW thermal power and an equivalence ratio of 0.60 was chosen for detailed characterization of the nonlinear transient behaviors. Flame transfer functions were experimentally determined by simultaneous measurements of inlet velocity fluctuations and heat release rate oscillations using a constant temperature anemometer and OH */CH * chemiluminescence emissions, respectively. The phase-resolved variation of the local flame structure at a limit cycle was measured by planar laser-induced fluorescence of OH. Simultaneous measurements of inlet velocity, OH */CH * emission, and acoustic pressure were performed to investigate the temporal evolution of the system from a stable to a limit cycle operation. This measurement allows us to describe an unsteady instability triggering event in terms of several distinct stages: (i) initiation of a small perturbation, (ii) exponential amplification, (iii) saturation, (iv) nonlinear evolution of the perturbations towards a new unstable periodic state, (v) quasi-steady low-amplitude periodic oscillation, and (vi) fully-developed high-amplitude limit cycle oscillation. Phase-plane portraits of instantaneous inlet velocity and heat release rate clearly show the presence of two different attractors. Depending on its initial position in phase space at infinitesimally small amplitude, the system evolves towards either a high-amplitude oscillatory state or a low-amplitude oscillatory state. This transient phenomenon was analyzed using frequency- and amplitude-dependent damping mechanisms, and compared to subcritical and supercritical bifurcation theories. The results presented in this paper experimentally demonstrate the hypothesis proposed by Preetham et al. based on analytical and computational solutions of the nonlinear G-equation [J. Propul. Power 24 (2008) 1390-1402]. Good quantitative agreement was obtained between measurements and predictions in terms of the conditions for the onset of triggering and the amplitude of triggered combustion instabilities. © 2011 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed experimental investigations of the amplitude dependence of flame describing functions (FDF) were performed using a stratified swirl-stabilized combustor, in order to understand the combustion-acoustic interactions of CH4/air flames propagating into nonhomogeneous reactant stoichiometry. Phase-synchronized OH planar laser induced fluorescence (OH PLIF) measurements were used to investigate local reaction zone structures of forced flames. To determine the amplitude-and frequency-dependent forced flame response, simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. The measurements were made over a wide range of stratification ratios, including inner stream enrichment ( θ o>θ i) and outer stream enrichment ( θ o>θ i)) conditions, and compared to the baseline condition of spatially and temporally homogeneous cases ( θ o=θ i)). Results show that for the inlet conditions investigated, fuel stratification has a significant influence on local and global flame structures of unforced and forced flames. Under stratified conditions, length scales of local contours were found to be much larger than the homogeneous case due to high kinematic viscosities associated with high temperature. Stratification has a remarkable effect on flame-vortex interactions when the flame is subjected to high-amplitude acoustic forcing, leading to different evolution patterns of FDF (amplitude and disturbance convective time) in response to the amplitude of the imposed inlet velocity oscillation. The present experimental investigation reveals that intentional stratification has the potential to eliminate or suppress the occurrence of detrimental combustion instability problems in lean-premixed gas turbine combustion systems. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow field of a lab-scale model gas turbine swirl burner was characterised using particle imaging velocimetry (PIV) at atmospheric condition. The swirl burner consists of an axial swirler, a twin-fluid atomizer and a quartz tube as combustor wall. The main non-reacting swirling air flow without spray was compared to swirl flow with spray under unconfined and enclosed conditions. The introduction of liquid fuel spray changes the flow field of the main swirling air flow at the burner outlet where the radial velocity components are enhanced. Under reacting conditions, the enclosure generates a corner recirculation zone that intensifies the strength of the radial velocity. Comparison of the flow fields with a spray flame using diesel and palm biodiesel shows very similar flow fields. The flow field data can be used as validation target for swirl flame modeling. © (2013) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrodynamic instabilities in gas turbine fuel injectors help to mix the fuel and air but can sometimes lock into acoustic oscillations and contribute to thermoacoustic instability. This paper describes a linear stability analysis that predicts the frequencies and strengths of hydrodynamic instabilities and identifies the regions of the flow that cause them. It distinguishes between convective instabilities, which grow in time but are convected away by the flow, and absolute instabilities, which grow in time without being convected away. Convectively unstable flows amplify external perturbations, while absolutely unstable flows also oscillate at intrinsic frequencies. As an input, this analysis requires velocity and density fields, either from a steady but unstable solution to the Navier-Stokes equations, or from time-averaged numerical simulations. In the former case, the analysis is a predictive tool. In the latter case, it is a diagnostic tool. This technique is applied to three flows: a swirling wake at Re = 400, a single stream swirling fuel injector at Re - 106, and a lean premixed gas turbine injector with five swirling streams at Re - 106. Its application to the swirling wake demonstrates that this technique can correctly predict the frequency, growth rate and dominant wavemaker region of the flow. It also shows that the zone of absolute instability found from the spatio-temporal analysis is a good approximation to the wavemaker region, which is found by overlapping the direct and adjoint global modes. This approximation is used in the other two flows because it is difficult to calculate their adjoint global modes. Its application to the single stream fuel injector demonstrates that it can identify the regions of the flow that are responsible for generating the hydrodynamic oscillations seen in LES and experimental data. The frequencies predicted by this technique are within a few percent of the measured frequencies. The technique also explains why these oscillations become weaker when a central jet is injected along the centreline. This is because the absolutely unstable region that causes the oscillations becomes convectively unstable. Its application to the lean premixed gas turbine injector reveals that several regions of the flow are hydrodynamically unstable, each with a different frequency and a different strength. For example, it reveals that the central region of confined swirling flow is strongly absolutely unstable and sets up a precessing vortex core, which is likely to aid mixing throughout the injector. It also reveals that the region between the second and third streams is slightly absolutely unstable at a frequency that is likely to coincide with acoustic modes within the combustion chamber. This technique, coupled with knowledge of the acoustic modes in a combustion chamber, is likely to be a useful design tool for the passive control of mixing and combustion instability. Copyright © 2012 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding combustion instabilities requires accurate measurements of the acoustic velocity perturbation into injectors. This is often accomplished via the use of the two microphone technique, as this only requires two pressure transducers. However, measurements of the actual velocities emerging from the injectors are not often taken, leaving questions regarding the assumptions about the acoustic velocity. A comparison of velocity measured at downstream of the injector with that of two-microphone technique can show the accuracy and limitations of two-microphone technique. In this paper, velocity measurements are taken using both particle image velocimetry (PIV) and the two-microphone technique in a high pressure facility designed for aeroengine injector measurements. The flow is excited using an area modulation device installed on the choked end of the combustion chamber, with PIV measurements enabled by optical access downstream of the injector through a quartz tube and windows. Acoustic velocity perturbations at the injector are determined by considering the Fourier transformed pressure fluctuations for two microphones installed at a known distance upstream of the injector. PIV measurements are realized by seeding the air flow with micrometric water particles under 2.5 bar pressure at ambient temperature. Phase locked velocity fields are realized by synchronizing the acquisition of PIV images with the revolution of the acoustic modulator using the pressure signal measured at the face of injector. The mean velocity fluctuation is calculated as the difference between maximum and minimum velocities, normalized by the mean velocity of the unforced case. Those values are compared with the peak-to-peak velocity fluctuation amplitude calculated by the two-microphone technique. Although the ranges of velocity fluctuations for both techniques are similar, the variation of fluctuation with forcing frequencies diverges significantly with frequency. The differences can be attributed to several limitations associated with of both techniques, such as the quality of the signal, the signal/noise ratio, the accuracy of PIV measurements and the assumption of isentropic flow of the particle velocity from the plenum through the injector. We conclude that two-microphone methods can be used as a reference value for the velocity fluctuation in low order applications such as flame transfer functions, but not for drawing conclusions regarding the absolute velocity fluctuations in the injector. Copyright © 2013 by ASME.