115 resultados para Spectral filters
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.
Resumo:
We develop methods for performing filtering and smoothing in non-linear non-Gaussian dynamical models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. In particular, novel techniques are presented for generation of random realisations from the joint smoothing distribution and for MAP estimation of the state sequence. Realisations of the smoothing distribution are generated in a forward-backward procedure, while the MAP estimation procedure can be performed in a single forward pass of the Viterbi algorithm applied to a discretised version of the state space. An application to spectral estimation for time-varying autoregressions is described.
Resumo:
We present a statistical model-based approach to signal enhancement in the case of additive broadband noise. Because broadband noise is localised in neither time nor frequency, its removal is one of the most pervasive and difficult signal enhancement tasks. In order to improve perceived signal quality, we take advantage of human perception and define a best estimate of the original signal in terms of a cost function incorporating perceptual optimality criteria. We derive the resultant signal estimator and implement it in a short-time spectral attenuation framework. Audio examples, references, and further information may be found at http://www-sigproc.eng.cam.ac.uk/~pjw47.