31 resultados para Small red brocket


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructures and mechanical properties have been studied in aluminium containing a fine dispersion of alumina particles, deformed by cold-rolling to strains between 1.4 and 3.5. The microstructure was characterised by TEM. The deformation structures evolved very rapidly, forming a nanostructured material, with fine subgrains about 0.2 μm in diameter and a fraction of high-angle boundaries which was already high at a strain of 1.4, but continued to increase with rolling strain. The yield stress and ductility of the rolled materials were measured in tension, and properties were similar for all materials. Yield stress measurements were correlated with estimates made using microstructural models. The role of small particles in forming and stabilising the deformation structure is discussed. This nanostructured cold-deformed alloy has mechanical properties which are usefully enhanced at comparatively low cost. This gives it, and similar particle-strengthened alloys, good potential for commercial exploitation. © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rationale behind this work is to design an implant device, based on a ferromagnetic material, with the potential to deform in vivo promoting osseointegration through the growth of a healthy periprosthetic bone structure. One of the primary requirements for such a device is that the material should be non-inflammatory and non-cytotoxic. In the study described here, we assessed the short-term cellular response to 444 ferritic stainless steel; a steel, with a very low interstitial content and a small amount of strong carbide-forming elements to enhance intergranular corrosion resistance. Two different human cell types were used: (i) foetal osteoblasts and (ii) monocytes. Austenitic stainless steel 316L, currently utilised in many commercially available implant designs, and tissue culture plastic were used as the control surfaces. Cell viability, proliferation and alkaline phosphatase activity were measured. In addition, cells were stained with alizarin red and fluorescently-labelled phalloidin and examined using light, fluorescence and scanning electron microscopy. Results showed that the osteoblast cells exhibited a very similar degree of attachment, growth and osteogenic differentiation on all surfaces. Measurement of lactate dehydrogenase activity and tumour necrosis factor alpha protein released from human monocytes indicated that 444 stainless steel did not cause cytotoxic effects or any significant inflammatory response. Collectively, the results suggest that 444 ferritic stainless steel has the potential to be used in advanced bone implant designs. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: