33 resultados para Silicon solar cells.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120°C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO2 and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement. © 2010 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5×108 and 5×109 cm-2. Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TD density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TD density sample was three times higher than that of the high TD density sample. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.