124 resultados para SAMALL ANGLE SCATTERING
Resumo:
New chiral compounds 3R-methylcyclohexanone derivatives were synthesized. These compounds were revealed to exhibit the mesomorphic behavior within rather wide temperature ranges. Types of formed mesophases and phase transition temperatures were determined by polarizing microscopy, differential scanning calorimetry and small angle scattering of X-ray. Mesomorphic properties of the new chiral compounds were compared with those for the chiral 2-arylidene derivatives of 3R,6R-3-methyl-6-isopropylcyclohexanone (d-isomenthone) studied earlier. Distinctions between these two types of compounds in an ability to form mesophases and also in twisting properties as chiral dopants in induced cholesteric mesophases are considered.
Resumo:
An ultrasound image is created from backscattered echoes originating from both diffuse and directional scattering. It is potentially useful to separate these two components for the purpose of tissue characterization. This article presents several models for visualization of scattering fields on 3-dimensional (3D) ultrasound imaging. By scanning the same anatomy from multiple directions, we can observe the variation of specular intensity as a function of the viewing angle. This article considers two models for estimating the diffuse and specular components of the backscattered intensity: a modification of the well-known Phong reflection model and an existing exponential model. We examine 2-dimensional implementations and also propose novel 3D extensions of these models in which the probe is not constrained to rotate within a plane. Both simulation and experimental results show that improved performance can be achieved with 3D models. © 2013 by the American Institute of Ultrasound in Medicine.
Resumo:
We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.
Resumo:
Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.
Resumo:
In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.
Resumo:
We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.
Resumo:
We present solutions to scattering problems for unsteady disturbances to a mean swirling flow in an annular duct with a rigid 'splitter'. This situation has application to rotor-stator interaction noise in aeroengines, where the flow downstream of the fan is swirling and bifurcates into the by-pass duct and the engine core. We also consider the trailing edge extension of this problem. Inviscid mean flow in a cylindrical annulus is considered, with both axial and swirling (azimuthal) velocity components. The presence of vorticity in the mean flow couples the acoustic and vorticity modes of irrotational flow. Instead we have one combined spectrum of acoustic-vorticity waves in which the 'sonic' and 'nearly-convected' modes are fully coupled. In addition to the aeroacoustics application the results offer insight into the behaviour of these acoustic-vorticity waves, and the precise nature of the coupling between the two types of mode. Two regimes are discussed in which progress has been made, one for a specialised mean flow, uniform axial flow and rigid body swirl, and a second regime in which the frequency is assumed large, valid for any axisymmetric mean flow. The Wiener-Hopf technique is used to solve the scattering problems mathematically, and we present numerical evaluations of these solutions. Several new effects are seen to arise due to the mean vorticity, in particular the generation of sound at a trailing edge due to the scattering of a nearly convected disturbance, in contrast to the way a convected gust silently passes a trailing edge in uniform mean flow.
Resumo:
An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1, - ∞ < x < ∞ with mean flow Mach number M > 0 and a hard wall along x < 0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t), no more singular than h = Ο(x1/2) for x ↓ 0. A mode, incident from x < 0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = Ο(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z (ω) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ω → 0, the modulus fends to |R001| → (1 + M)/(1 -M) without and to 1 with Kutta condition, while the end correction tends to ∞ without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow.