307 resultados para Robust Statistics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression for the probability density function of the second order response of a general FPSO in spreading seas is derived by using the Kac-Siegert approach. Various approximations of the second order force transfer functions are investigated for a ship-shaped FPSO. It is found that, when expressed in non-dimensional form, the probability density function of the response is not particularly sensitive to wave spreading, although the mean squared response and the resulting dimensional extreme values can be sensitive. The analysis is then applied to a Sevan FPSO, which is a large cylindrical buoy-like structure. The second order force transfer functions are derived by using an efficient semi-analytical hydrodynamic approach, and these are then employed to yield the extreme response. However, a significant effect of wave spreading on the statistics for a Sevan FPSO is found even in non-dimensional form. It implies that the exact statistics of a general ship-shaped FPSO may be sensitive to the wave direction, which needs to be verified in future work. It is also pointed out that the Newman's approximation regarding the frequency dependency of force transfer function is acceptable even for the spreading seas. An improvement on the results may be attained when considering the angular dependency exactly. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. © 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper methods are developed for enhancement and analysis of autoregressive moving average (ARMA) signals observed in additive noise which can be represented as mixtures of heavy-tailed non-Gaussian sources and a Gaussian background component. Such models find application in systems such as atmospheric communications channels or early sound recordings which are prone to intermittent impulse noise. Markov Chain Monte Carlo (MCMC) simulation techniques are applied to the joint problem of signal extraction, model parameter estimation and detection of impulses within a fully Bayesian framework. The algorithms require only simple linear iterations for all of the unknowns, including the MA parameters, which is in contrast with existing MCMC methods for analysis of noise-free ARMA models. The methods are illustrated using synthetic data and noise-degraded sound recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical Process Control (SPC) technique are well established across a wide range of industries. In particular, the plotting of key steady state variables with their statistical limit against time (Shewart charting) is a common approach for monitoring the normality of production. This paper aims with extending Shewart charting techniques to the quality monitoring of variables driven by uncertain dynamic processes, which has particular application in the process industries where it is desirable to monitor process variables on-line as well as final product. The robust approach to dynamic SPC is based on previous work on guaranteed cost filtering for linear systems and is intended to provide a basis for both a wide application of SPC monitoring and also motivate unstructured fault detection.