177 resultados para Reward rate
Resumo:
Establishing a function for the neuromodulator serotonin in human decision-making has proved remarkably difficult because if its complex role in reward and punishment processing. In a novel choice task where actions led concurrently and independently to the stochastic delivery of both money and pain, we studied the impact of decreased brain serotonin induced by acute dietary tryptophan depletion. Depletion selectively impaired both behavioral and neural representations of reward outcome value, and hence the effective exchange rate by which rewards and punishments were compared. This effect was computationally and anatomically distinct from a separate effect on increasing outcome-independent choice perseveration. Our results provide evidence for a surprising role for serotonin in reward processing, while illustrating its complex and multifarious effects.
Resumo:
Bacteria of the species Salmonella enterica cause a range of life-threatening diseases in humans and animals worldwide. The within-host quantitative, spatial, and temporal dynamics of S. enterica interactions are key to understanding how immunity acts on these infections and how bacteria evade immune surveillance. In this study, we test hypotheses generated from mathematical models of in vivo dynamics of Salmonella infections with experimental observation of bacteria at the single-cell level in infected mouse organs to improve our understanding of the dynamic interactions between host and bacterial mechanisms that determine net growth rates of S. enterica within the host. We show that both bacterial and host factors determine the numerical distributions of bacteria within host cells and thus the level of dispersiveness of the infection.
Resumo:
The non-deterministic relationship between Bit Error Rate and Packet Error Rate is demonstrated for an optical media access layer in common use. We show that frequency components of coded, non-random data can cause this relationship. © 2005 Optical Society of America.
Resumo:
Humans appear to have an inherent prosocial tendency toward one another in that we often take pleasure in seeing others succeed. This fact is almost certainly exploited by game shows, yet why watching others win elicits a pleasurable vicarious rewarding feeling in the absence of personal economic gain is unclear. One explanation is that game shows use contestants who have similarities to the viewing population, thereby kindling kin-motivated responses (for example, prosocial behavior). Using a game show-inspired paradigm, we show that the interactions between the ventral striatum and anterior cingulate cortex subserve the modulation of vicarious reward by similarity, respectively. Our results support studies showing that similarity acts as a proximate neurobiological mechanism where prosocial behavior extends to unrelated strangers.
Resumo:
In order to find a link between results obtained from a laboratory erosion tester and tests carried out on a pneumatic conveyor, a comparison has been made between weight loss from bends on an industrial-scale pneumatic conveyor and erosion rates obtained in a small centrifugal erosion tester, for the same materials. Identical test conditions have been applied to both experiments so that comparable test results have been obtained. The erosion rate of mild steel commonly used as the wall material of conveyor pipes and pipe bends was determined individually on both test rigs. A relationship between weight loss from the bends and erosion rate determined from the tester has been developed. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.
Resumo:
This paper demonstrates the respective roles that combined index- and gain-coupling play in the overall link performance of distributed feedback (DFB) lasers. Their impacts on both static and dynamic properties such as slope efficiency, resonance frequency, damping rate, and chirp are investigated. Simulation results are compared with experimental data with good agreement. Transmission-oriented optimization is then demonstrated based on a targeted specification. The design tradeoffs are revealed, and it is shown that a modest combination of index- and gain-coupling enables optimum transmission at 10 Gbit/s.
Resumo:
Coupled-cavity passive harmonic mode-locking of a quantum well based vertical-external-cavity surface-emitting laser has been demonstrated, yielding an output pulse train of 1.5 ps pulses at a repetition rate of 80 GHz and with an average power of 80 mW. Harmonic mode-locking results from coupling between the main laser cavity and a cavity formed within the substrate of the saturable absorber structure. Mode-locking on the second harmonic of the substrate cavity allows a train of 1.1 ps pulses to be generated at a repetition rate of 147 GHz with 40 mW average power. © 2010 American Institute of Physics.
Resumo:
Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for a variety of engineering applications, and research on the processing and properties of this material has attracted world-wide interest. In particular, the introduction of flux pinning centres to the large grain microstructure to improve its current density, Jc, and hence trapped field, has been investigated extensively over the past decade. Y 2Ba4CuMOx [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been reported to form particularly effective flux pinning centres in YBCO due primarily to its ability to exist as nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. We report an investigation of the growth rate of single YBCO grains containing Y-2411(Bi) phase inclusions and Y2O3. The superconducting properties of these large single grains have been measured specifically to investigate the effect of Y2O3 on broadening the growth window of these materials. © 2010 IOP Publishing Ltd.
Resumo:
The dominant industrial approach for the reduction of NO x emissions in industrial gas turbines is the lean pre-mixed prevaporized concept. The main advantage of this concept is the lean operation of the combustion process; this decreases the heat release rate from the flame and results in a reduction in operating temperature. The direct measurement of heat release rates via simultaneous laser induced fluorescence of OH and CH 2O radicals using planar laser induced fluorescence. The product of the two images correlated with the forward production rate of the HCO radical, which in turn has correlated well with heat release rates from premixed hydrocarbon flames. The experimental methodology of the measurement of heat release rate and applications in different turbulent premixed flames were presented. This is an abstract of a paper presented at the 7th World Congress of Chemical Engineering (Glasgow, Scotland 7/10-14/2005).
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.