191 resultados para Quasi-linear


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental observations of the time-dependent mechanical responses of collagenous tissues have demonstrated behavior that deviates from standard treatments of linear or quasi-linear viscoelasticity. In particular, time-dependent deformation can be strongly coupled to strain level, and strain-rate independence can be observed under monotonic loading, even for a tissue with dramatic stress relaxation. It was postulated that this nonlinearity is fundamentally associated with gradual recruitment of individual collagen fibrils during applied mechanical loading. Based on previously observed experimental results for the time-dependent response of collagenous soft tissues, a model is developed to describe the mechanical behavior of these tissues under uniaxial loading. Tissue stresses, under applied strain-controlled loading, are assumed to be a sum of elastic and viscoelastic stress contributions. The relative contributions of elastic and viscoelastic stresses is assumed to vary with strain level, leading to strain- and time-dependent mechanical behavior. The model formulation is examined under conditions of monotonic loading at varying constant strain rates and stress-relaxation at different applied strain levels. The model is compared with experimental data for a membranous biological soft tissue, the amniotic sac, and is found to agree well with experimental results. The limiting behavior of the novel model, at large strains relative to the collagen recruitment, is consistent with the quasi-linear viscoelastic approach. © 2006 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies and amplitudes of limit cycles. In frequency domain analyses, a quasi-linear transfer function between acoustic velocity and heat release rate perturbations, called the flame describing function (FDF), is obtained from a flame model or experiments. The FDF is a function of the frequency and amplitude of velocity perturbations but only contains the heat release response at the forcing frequency. While the gain and phase of the FDF provide insight into the nonlinear dynamics of the system, the accuracy of its predictions remains to be verified for different types of nonlinearity. In time domain analyses, the governing equations of the fully coupled problem are solved to find the time evolution of the system. One method is to discretize the governing equations using a suitable basis, such as the natural acoustic modes of the system. The number of modes used in the discretization alters the accuracy of the solution. In our previous work we have shown that predictions using the FDF are almost exactly the same as those obtained from the time-domain using only one mode for the discretization. We call this the single-mode method. In this paper we compare results from the single-mode and multi-mode methods, applied to a thermoacoustic system of a premixed flame in a tube. For some cases, the results differ greatly in both amplitude as well as frequency content. This study shows that the contribution from higher and subharmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Hence multi-mode simulations are necessary, and the single-mode method or the FDF may be insufficient to capture some of the complex nonlinear behaviour in fhermoacoustics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In any thermoacoustic analysis, it is important not only to predict linear frequencies and growth rates, but also the amplitude and frequencies of any limit cycles. The Flame Describing Function (FDF) approach is a quasi-linear analysis which allows the prediction of both the linear and nonlinear behaviour of a thermoacoustic system. This means that one can predict linear growth rates and frequencies, and also the amplitudes and frequencies of any limit cycles. The FDF achieves this by assuming that the acoustics are linear and that the flame, which is the only nonlinear element in the thermoacoustic system, can be adequately described by considering only its response at the frequency at which it is forced. Therefore any harmonics generated by the flame's nonlinear response are not considered. This implies that these nonlinear harmonics are small or that they are sufficiently filtered out by the linear dynamics of the system (the low-pass filter assumption). In this paper, a flame model with a simple saturation nonlinearity is coupled to simple duct acoustics, and the success of the FDF in predicting limit cycles is studied over a range of flame positions and acoustic damping parameters. Although these two parameters affect only the linear acoustics and not the nonlinear flame dynamics, they determine the validity of the low-pass filter assumption made in applying the flame describing function approach. Their importance is highlighted by studying the level of success of an FDF-based analysis as they are varied. This is achieved by comparing the FDF's prediction of limit-cycle amplitudes to the amplitudes seen in time domain simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.