220 resultados para Quasars: emission lines
Resumo:
Carbon nanotube (CNT) emitters were formed on line-patterned cathodes in microtrenches through a thermal CVD process. Single-walled carbon nanotubes (SWCNTs) self-organized along the trench lines with a submicron inter-CNT spacing. Excellent field emission (FE) properties were obtained: current densities at the anode (J(a)) of 1 microA cm(-2), 10 mA cm(-2) and 100 mA cm(-2) were recorded at gate voltages (V(g)) of 16, 25 and 36 V, respectively. The required voltage difference to gain a 1:10 000 contrast of the anode current was as low as 9 V, indicating that a very low operating voltage is possible for these devices. Not only a large number of emission sites but also the optimal combination of trench structure and emitter morphology are crucial to achieve the full FE potential of thin CNTs with a practical lifetime. The FE properties of 1D arrays of CNT emitters and their optimal design are discussed. Self-organization of thin CNTs is an attractive prospect to tailor preferable emitter designs in FE devices.
Resumo:
Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material. (C) 2002 American Institute of Physics.
Resumo:
We demonstrate the growth of crack-free blue and greenemitting LED structures grown on 2-inch and 6-inch Si(111) substrates by metalorganic vapour phase epitaxy (MOVPE), using AlN nucleation layers and AlGaN buffer layers for stress management. LED device performance and its dependence on threading dislocation (TD) density and emission wavelength were studied. Despite the inherently low light extraction efficiency, an output power of 1.2 mW at 50 mA was measured from a 500 μm square planar device, emitting at 455 nm. The light output decreases dramatically as the emission wavelength increases from 455 nm to 510 nm. For LED devices emitting at similar wavelength, the light output was more than doubled when the TD density was reduced from 5×1 09 cm-2 to 2×109 cm-2. Our results clearly show that high TD density is detrimental to the overall light output, highlighting the need for further TD reduction for structures grown on Si. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (∼50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.
Resumo:
Plasma enhanced chemical vapour deposition (PECVD) is a controlled technique for the production of vertically aligned multiwall carbon nanotubes for field emission applications. In this paper, we investigate the electrical properties of individual carbon nanotubes which is important for designing field emission devices. PECVD nanotubes exhibit a room temperature resistance of 1-10 kΩ/μm length (resistivity 10-6 to 10-5 Ω m) and have a maximum current carrying capability of 0.2-2 mA (current density 107-108 A/cm2). The field emission characteristics show that the field enhancement of the structures is strongly related to the geometry (height/radius) of the structures and maximum emission currents of ∼ 10 μA were obtained. The failure of nanotubes under field emission is also discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
It becomes increasingly difficult to make continuous metal lines with well defined thickness and edges by the lift-off technique as the line width is decreased. We describe in this paper a technique in which the combination of high resolution electron beam lithography and ionized cluster beam (ICB) deposition has enabled very high quality gold lines ({all equal to}25nm wide) to be obtained on thick single crystal silicon substrates. © 1990.