70 resultados para Pressure field distribution


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. It was found that in addition to upstream vane-rotor and rotor-downstream vane interactions, a new interaction mechanism was found resulting from the interaction between the downstream vane's potential field and the upstream vane's trailing edge potential field and shock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. Evidence was obtained that for a large downstream vane, the flow conditions in the rotor passage, at any instant in time, are close to being steady state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a semi analytic model for rotor - stator broadband noise is presented. The work can be split into two sections. The first examines the distortion of the rotor wake in mean swirling flow, downstream of the fan. Previous work by Cooper and Peake4 is extended to include dissipative effects. In the second section we consider the interaction of this gust with the downstream stator row. We examine the way in which an unsteady pressure field is generated by the interaction of this wake flow with the stator blades and obtain estimates for the radiated noise. A new method is presented to extend the well known LINSUB code to the third dimension to capture the effect of the spanwise wavenumber and stator lean and sweep. Copyright © 2008 by Adrian Lloyd and Nigel Peake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electric field distribution in the super junction power MOSFET is analyzed using analytical modeling and numerical simulations in this paper. The single-event burn-out (SEB) and single-event gate rupture (SEGR) phenomena in this device are studied in detail. It is demonstrated that the super junction device is much less sensitive to SEB and SEGR compared to the standard power MOSFET. The physical mechanism is explained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an analytical model for the determination of the basic breakdown properties of three-dimensional (3D)-RESURF/CoolMOS/super junction type structures. To account for the two-dimensional (2D) effect of the 3D-RESURF action, 2D models of the electric field distribution are developed. Based on these, expressions are derived for the breakdown voltage as a function of doping concentration and physical dimensions. In addition to cases where the drift regions are fully depleted, the model developed is also applicable to situations involving drift regions which are almost depleted. Accuracy of the analytical approach is verified by comparison with numerical results obtained from the MEDICI device simulator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we engage a Lagrangian, particle-based CFD method, named Smoothed Particle Hydrodynamic (SPH) to study the solitary wave motion and its impact on coastal structures. Two-dimensional weakly compressible and incompressible SPH models were applied to simulate wave impacting on seawall and schematic coastal house. The results confirmed the accuracy of both models for predicting the wave surface profiles. The incompressible SPH model performed better in predicting the pressure field and impact loadings on coastal structures than the weakly compressible SPH model. The results are in qualitatively agreement with experimental results. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low specific on-resistance (R-{{\rm on}, {\rm sp}}) integrable silicon-on-insulator (SOI) MOSFET is proposed, and its mechanism is investigated by simulation. The SOI MOSFET features double trenches and dual gates (DTDG SOI): an oxide trench in the drift region, a buried gate inset in the oxide trench, and another trench gate (TG) extended to a buried oxide layer. First, the dual gates form dual conduction channels, and the extended gate widens the vertical conduction area; both of which sharply reduce R-{{\rm on}, {\rm sp}}. Second, the oxide trench folds the drift region in the vertical direction, resulting in a reduced device pitch and R-{{\rm on}, {\rm sp}}. Third, the oxide trench causes multidirectional depletion. This not only enhances the reduced surface field effect and thus reshapes the electric field distribution but also increases the drift doping concentration, leading to a reduced R-{{\rm on}, {\rm sp}} and an improved breakdown voltage (BV). Compared with a conventional SOI lateral Double-diffused metal oxide semiconductor (LDMOS), the DTDG MOSFET increases BV from 39 to 92 V at the same cell pitch or decreases R-{{\rm on}, { \rm sp}} by 77% at the same BV by simulation. Finally, the TG extended synchronously acts as an isolation trench between the high/low-voltage regions in a high-voltage integrated circuit, saving the chip area and simplifying the isolation process. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This letter presents a novel lateral superjunction lateral insulated-gate bipolar transistor (LIGBT) in partial silicon-on-insulator (SOI) technology in 0.18-μm partial-SOI (PSOI) high-voltage (HV) process. For an n-type superjunction LIGBT, the p-layer in the superjunction drift region not only helps in achieving uniform electric field distribution but also contributes to the on-state current. The superjunction LIGBT successfully achieves a breakdown voltage (BV) of 210 V with an R dson of 765 mΩ ̇ mm 2. It exhibits half the value of specific on-state resistance R dson and three times higher saturation current (I dsat) for the same BV, compared to a comparable lateral superjunction laterally diffused metal-oxide-semiconductor fabricated in the same technology. It also performs well in higher temperature dc operation with 38.8% increase in R dson at 175°C, compared to the room temperature without any degradation in latch-up performance. To realize this device, it only requires one additional mask layer into X-FAB 0.18-μm PSOI HV process. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A finite element model for a YBCO pancake coil with a magnetic substrate is developed in this paper. An axial symmetrical H formulation and the E-J power law are used to construct the model, with the magnetic substrate considered by introducing an extra time-dependent term in the formula. A pancake coil is made and tested. The measurement of critical current and transport loss is compared to the model result, showing good consistency. The influence of magnetic substrate in the condition of AC and DC current is studied. The AC loss decreases without a magnetic substrate. It is observed that when the applied DC current approaches the critical current the coil turn loss profile changes completely in the presence of magnetic substrate due to the change of magnetic field distribution. © 2012 IOP Publishing Ltd.