56 resultados para Polymer-Ceramic Composites
Resumo:
A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.
Resumo:
The development of high performance ceramics and ceramic composites often relies on assumptions about their behaviour during loading and at failure. A crucial influence on the mechanical properties of these materials is the degree of sub-critical cracking, which post mortem investigations cannot adequately reveal. Hence a clear picture of the dynamic micromechanisms of cracking is required if applications of fracture and damage mechanics to theoretical models is to be meaningful.
Resumo:
La0.7Ca0.3MnO3/Mn3O4 composites can be synthesized in one step by thermal treatment of a spray-dried precursor, instead of mixing pre-synthesized powders. Another advantage of this composite system is that a long sintering step can be used without leading to significant modification of the manganite composition. The percolation threshold is reached at ∼20 vol% of manganite phase. The 77 K low field magnetoresistance is enhanced to ∼11% at 0.15 T when the composition is close to the percolation threshold. © 2007 Elsevier Ltd. All rights reserved.
On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite
Resumo:
Plastic electronics is a rapidly expanding topic, much of which has been focused on organic semiconductors. However, it is also of interest to find viable ways to integrate nanomaterials, such as silicon nanowires (SiNWs) and carbon nanotubes (CNTs), into this technology. Here, we present methods of fabrication of composite devices incorporating such nanostructured materials into an organic matrix. We investigate the formation of polymer/CNT composites, for which we use the semiconducting polymer poly(3,3‴-dialkyl-quaterthiophene) (PQT). We also report a method of fabricating polymer/SiNW TFTs, whereby sparse arrays of parallel oriented SiNWs are initially prepared on silicon dioxide substrates from forests of as-grown gold-catalysed SiNWs. Subsequent ink-jet printing of PQT on these arrays produces a polymer/SiNW composite film. We also present the electrical characterization of all composite devices. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.
Resumo:
A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.