99 resultados para Organic fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in nonpolar organic solvents. The active conjugated groups, which are highly attracted to the graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and cross-linked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that the pyrene-siloxane surfactant is very effective in dispersing multiwall nanotubes, while the porphyrin-siloxane makes single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic electronics is a rapidly expanding topic, much of which has been focused on organic semiconductors. However, it is also of interest to find viable ways to integrate nanomaterials, such as silicon nanowires (SiNWs) and carbon nanotubes (CNTs), into this technology. Here, we present methods of fabrication of composite devices incorporating such nanostructured materials into an organic matrix. We investigate the formation of polymer/CNT composites, for which we use the semiconducting polymer poly(3,3‴-dialkyl-quaterthiophene) (PQT). We also report a method of fabricating polymer/SiNW TFTs, whereby sparse arrays of parallel oriented SiNWs are initially prepared on silicon dioxide substrates from forests of as-grown gold-catalysed SiNWs. Subsequent ink-jet printing of PQT on these arrays produces a polymer/SiNW composite film. We also present the electrical characterization of all composite devices. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical fluids (SCFs) offer a wide range of opportunities as media for chemical reactions and supercritical CO2, ScCO2, is becoming increasingly important as a benign replacement for more toxic solvents.1 High pressure reactions, however, are more capital intensive than conventional low pressure processes. Therefore, supercritical fluids will only gain widespread acceptance in those areas where the fluids give real chemical advantages as well as environmental benefits. This lecture gives a brief account of the use of flow reactors for continuous reactions in supercritical fluids, particularly those of interest for the manufacture of fine chemicals.