101 resultados para Optical fiber
Resumo:
An optical fiber strain sensing technique, based on Brillouin Optical Time Domain Reflectometry (BOTDR), was used to obtain the full deformation profile of a secant pile wall during construction of an adjacent basement in London. Details of the installation of sensors as well as data processing are described. By installing optical fiber down opposite sides of the pile, the distributed strain profiles obtained can be used to give both the axial and lateral movements along the pile. Measurements obtained from the BOTDR were found in good agreement with inclinometer data from the adjacent piles. The relative merits of the two different techniques are discussed. © 2007 ASCE.
Resumo:
The paper describes the use of optical fiber Brillouin Optical Time Domain Reflectometry (BOTDR) to monitor the strain distribution in an existing tunnel while a twin tunnel was bored at close-proximity. The twin circular bored tunnels between Serangoon and Bartley stations on the new Circle Line Stage 3 subway in Singapore were constructed at close-proximity to avoid underpinning the foundations of adjacent buildings. The minimum clear separation of the two tunnels is 2.3m (0.4 times the tunnel diameter). The Outer Tunnel was constructed first, followed by the Inner Tunnel, with the earth-pressure balance tunnel boring machines maintained at a minimum of 100m apart. In this trial application of BOTDR, the strain distribution along the Outer Tunnel was measured, in order to monitor its deformation due to the boring of the Inner Tunnel at close-proximity. The aim of the trial application was to determine the practicality of this monitoring method for future use in 'live' tunnels. This paper compares the measurements obtained from optical fiber BOTDR with conventional methods of tunnel monitoring and describes preliminary installation and workmanship guidelines derived from lessons learnt during this trial. © 2007 ASCE.
Resumo:
Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.
Resumo:
This paper proposed a non-intrusive method of measuring the optical beam profile at the surface of the liquid crystal on silicon (LCOS) device in an optical fiber switch. This method is based on blazed grating and can be employed in situ (on-line) for two-dimensional beam profiling in the LCOS-based optical fiber switches without introducing additional components or rearranging the system. The measured beam radius was in excellent agreement with that measured by the knife-edge technique. © 2013 Elsevier Ltd.