59 resultados para Normal occlusion
Resumo:
We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2010 by Sang Lee.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2011 Elsevier Ltd.