26 resultados para Nautical charts
Resumo:
The Brushless Doubly-Fed Machine (BDFM) is an electrical machine that allows brushless operation in many applications where the Doubly-Fed Induction Generator (DFIG) is currently used. In recent years work on BDFM control means that the machine can now be run stably across its working range. However, little work has been done to define the working area in which BDFM can safely be operated without exceeding its material and stability limits. This paper sets out the theoretical backing for an operating chart of an ideal BDFM similar to that of the synchronous machine. It goes on to show that though the ideal chart gives the right form, non-ideal parameters (especially the finite magnetizing inductances) significantly effect the locations of the limits. Some preliminary experimental data obtained for a 225 frame size machine support the form of the chart. Finally it is shown how the operating chart can be used to chose appropriately sized converters for the BDFM. © 2009 IEEE.
Resumo:
A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimization methods are employed for simultaneous selection of both material and shape.
Resumo:
A novel approach to the teaching of materials to engineering students is outlined. It starts from the overview of the "world" of materials made possible by material property charts, and develops both an understanding of material properties and skills in selecting materials and processes to meet design specifications. It is supported by extensive computer-based methods and tools, and is well adapted both for elementary and for advanced courses.
Resumo:
The application of high performance textiles has grown significantly in the last 10 to 15 years. Various research groups throughout the United Kingdom, such as the Department of Trade and Industry, have identified technical textiles as a field for future development. There is little design guidance for joining of flexible materials or general property models that can be applied to theses materials. This lack is due to the large diversity of properties, structures and resulting behaviours of the materials that are classified as "Flexible Materials". This dissertation explores the issues that are involved in characterising the materials at the fibre, bulk and textile levels. Different units of measurement are used for each stage of the manufacturing process of flexible materials and this disparity creates problems when trying to make general comparisons (e.g. comparing textiles to polymer films). Thus, a possible solution to this is to create selection charts that allow designers to compare the strength of materials for a given mass per unit area. A design tool was created using the Cambridge Engineering Selector (CES) software to enable the selection of joining processes for material. The tool is effective in selecting a reduced number of viable joining processes. Through case studies it was shown that designers are required to examine the selected processes (identified by the software) in greater detail - in particular the economics and geometry of the joint - in order to identify the optimum joining process.
Resumo:
This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer. © 2011 American Society of Civil Engineers.
Resumo:
The consistency of laboratory sand model preparation for physical testing is a fundamental criterion in representing identical geotechnical issues at prototype scale. This objective led to the development of robotic apparatus to eliminate the non-uniformity in manual pouring. Previous studies have shown consistent sand models with high relative density between 50 to 90% produced by the automatic moving-hopper sand pourer at the University of Cambridge, based primarily on a linear correlation to flow rate. However, in the case of loose samples, the influence of other parameters, particularly the drop height, becomes more apparent. In this paper, findings on the effect of flow rate and drop height are discussed in relation to the layer thickness and relative density of loose sand samples. Design charts are presented to illustrate their relationships. The effect of these factors on different sand types is also covered to extend the use of the equipment. © 2010 Taylor & Francis Group, London.
Resumo:
This paper presents the results of a preliminary study that seeks to show how asphalt grading and air voids are related to the texture depth of asphalt. The fiftieth percentile particle size (D50) is shown to be a good predictor of texture depth measurements from a collected database of field and laboratory studies. The D50 is used to normalise collected texture data and this 'relative texture' is shown to correlate with air voids. Regression analyses confirm that air voids should be included along with a measure of gradation in the interpretation of asphalt surface texture.The derived formulae are used to develop correlation charts.