16 resultados para Mixed integer models
Hybrid model predictive control applied to switching control of burner load for a compact marine boi
Resumo:
This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for which the optimal solution is a limit cycle. Regarding the marine boiler control the aim is to find an optimal control strategy which minimizes a trade-off between deviations in boiler pressure and water level from their respective setpoints while limiting burner switches.The approach taken is based on the Mixed Logic Dynamical framework. The whole boiler systems is modelled in this framework and a model predictive controller is designed. However to facilitate on-line implementation only a small part of the search tree in the mixed integer optimization is evaluated to find out whether a switch should occur or not. The strategy is verified on a simulation model of the compact marine boiler for control of low/high burner load switches. It is shown that even though performance is adequate for some disturbance levels it becomes deteriorated when the optimal solution is a limit cycle. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
In this paper, a strategy for min-max Moving Horizon Estimation (MHE) of a class of uncertain hybrid systems is proposed. The class of hybrid systems being considered are Piecewise Affine systems (PWA) with both continuous valued and logic components. Furthermore, we consider the case when there is a (possibly structured) norm bounded uncertainty in each subsystem. Sufficient conditions on the time horizon and the penalties on the state at the beginning of the estimation horizon to guarantee convergence of the MHE scheme will be provided. The MHE scheme will be implemented as a mixed integer semidefinite optimisation for which an efficient algorithm was recently introduced.
Resumo:
This paper provides a direct comparison of two stochastic optimisation techniques (Markov Chain Monte Carlo and Sequential Monte Carlo) when applied to the problem of conflict resolution and aircraft trajectory control in air traffic management. The two methods are then also compared to another existing technique of Mixed-Integer Linear Programming which is also popular in distributed control. © 2011 IFAC.
Resumo:
We consider the smoothing problem for a class of conditionally linear Gaussian state-space (CLGSS) models, referred to as mixed linear/nonlinear models. In contrast to the better studied hierarchical CLGSS models, these allow for an intricate cross dependence between the linear and the nonlinear parts of the state vector. We derive a Rao-Blackwellized particle smoother (RBPS) for this model class by exploiting its tractable substructure. The smoother is of the forward filtering/backward simulation type. A key feature of the proposed method is that, unlike existing RBPS for this model class, the linear part of the state vector is marginalized out in both the forward direction and in the backward direction. © 2013 IEEE.
Resumo:
Climate change is becoming a serious issue for the construction industry, since the time scales at which climate change takes place can be expected to show a true impact on the thermal performance of buildings and HVAC systems. In predicting this future building performance by means of building simulation, the underlying assumptions regarding thermal comfort conditions and the related heating, ventilating and air conditioning (HVAC) control set points become important. This article studies the thermal performance of a reference office building with mixedmode ventilation in the UK, using static and adaptive thermal approaches, for a series of time horizons (2020, 2050 and 2080). Results demonstrate the importance of the implementation of adaptive thermal comfort models, and underpin the case for its use in climate change impact studies. Adaptive thermal comfort can also be used by building designers to make buildings more resilient towards change. © 2010 International Building Performance Simulation Association (IBPSA).
Resumo:
In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be excited by a flat amplitude spectrum. In this article, we present a method using a mixed source model defined as a mixture of the Liljencrants-Fant (LF) model and Gaussian noise. Using the LF model, the base approach used in this presented work is therefore close to a vocoder using exogenous input like ARX-based methods or the Glottal Spectral Separation (GSS) method. Such approaches are therefore dedicated to voice processing promising an improved naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral division like in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX approach where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the amplitude spectra of both deterministic and random components of the glottal source. The proposed mixed source model is controlled by a small set of intuitive and independent parameters. The relevance of this voice production model is evaluated, through listening tests, in the context of resynthesis, HMM-based speech synthesis, breathiness modification and pitch transposition. © 2012 Elsevier B.V. All rights reserved.
Resumo:
It is shown that a new mixed nonlinear/eddy viscosity LES model reproduces profiles better than a number of competing nonlinear and mixed models for plane channel flow. The objective is an LES method that produces a fully resolved turbulent boundary layer and could be applied to a variety of aerospace problems that are currently studied with RANS, RANS-LES, or DES methods that lack a true turbulent boundary layer. There are two components to the new model. One an eddy viscosity based upon the advected subgrid scale energy and a relatively small coefficient. Second, filtered nonlinear terms based upon the Leray regularization. Coefficients for the eddy viscosity and nonlinear terms come from LES tests in decaying, isotropic turbulence. Using these coefficients, the velocity profile matches measurements data at Reτ ≈ 1000 exactly. Profiles of the components of kinetic energy have the same shape as in the experiment, but the magnitudes differ by about 25%. None of the competing LES gets the shape correct. This method does not require extra operations at the transition between the boundary layer and the interior flow.
Resumo:
Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.