81 resultados para Meaning making
Resumo:
Terms such as Integrated Assessment and Sustainability Assessment are used to label 'new' approaches to impact assessment that are designed to direct planning and decision-making towards sustainable development (SD). Established assessment techniques, such as EIA and SEA, are also widely promoted as SD 'tools'. This paper presents the findings of a literature review undertaken to identify the features that are typically promoted for improving the SD-directedness of assessments. A framework is developed which reconciles the broad range of emerging approaches and tackles the inconsistent use of terminology. The framework comprises a three-dimensional space defined by the following axes: the comprehensiveness of the SD coverage; the degree of 'integration' of the techniques and themes; and the extent to which a strategic perspective is adopted. By applying the framework, assessment approaches can be positioned relative to one another, enabling comparison on the basis of substance rather than semantics. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.
Modelling and simulation techniques for supporting healthcare decision making: a selection framework
A web-based semantic information retrieval system to support decision-making in collaborative design