175 resultados para MEANS ALGORITHM
Resumo:
The extrinsic tensile strength of glass can be determined explicitly if the characteristics of the critical surface flaw are known, or stochastically if the critical flaw characteristics are unknown. This paper makes contributions to both these approaches. Firstly it presents a unified model for determining the strength of glass explicitly, by accounting for both the inert strength limit and the sub-critical crack growth threshold. Secondly, it describes and illustrates the use of a numerical algorithm, based on the stochastic approach, that computes the characteristic tensile strength of float glass by piecewise summation of the surface stresses. The experimental validation and sensitivity analysis reported in this paper show that the proposed computer algorithm provides an accurate and efficient means of determining the characteristic strength of float glass. The algorithm is particularly useful for annealed and thermally treated float glass used in the construction industry. © 2012 Elsevier Ltd.
Resumo:
Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.
Resumo:
This paper introduces a new technique called species conservation for evolving parallel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current generation are saved (conserved) by moving them into the next generation. Our technique has proved to be very effective in finding multiple solutions of multimodal optimization problems. We demonstrate this by applying it to a set of test problems, including some problems known to be deceptive to genetic algorithms.
Resumo:
In this paper, a beamforming correction for identifying dipole sources by means of phased microphone array measurements is presented and implemented numerically and experimentally. Conventional beamforming techniques, which are developed for monopole sources, can lead to significant errors when applied to reconstruct dipole sources. A previous correction technique to microphone signals is extended to account for both source location and source power for two-dimensional microphone arrays. The new dipole-beamforming algorithm is developed by modifying the basic source definition used for beamforming. This technique improves the previous signal correction method and yields a beamformer applicable to sources which are suspected to be dipole in nature. Numerical simulations are performed, which validate the capability of this beamformer to recover ideal dipole sources. The beamforming correction is applied to the identification of realistic aeolian-tone dipoles and shows an improvement of array performance on estimating dipole source powers. © 2008 Acoustical Society of America.