176 resultados para Linear quadratic regulator (LQR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control systems (NCSs) have attracted much attention in the past decade due to their many advantages and growing number of applications. Different than classic control systems, resources in NCSs, such as network bandwidth and communication energy, are often limited, which degrade the closed-loop system performance and may even cause the system to become unstable. Seeking a desired trade-off between the closed-loop system performance and the limited resources is thus one heated area of research. In this paper, we analyze the trade-off between the sensor-to-controller communication rate and the closed-loop system performance indexed by the conventional LQG control cost. We present and compare several sensor data schedules, and demonstrate that two event-based sensor data schedules provide better trade-off than an optimal offline schedule. Simulation examples are provided to illustrate the theories developed in the paper. © 2012 AACC American Automatic Control Council).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the use of Monte Carlo techniques in deterministic nonlinear optimal control. Inter-dimensional population Markov Chain Monte Carlo (MCMC) techniques are proposed to solve the nonlinear optimal control problem. The linear quadratic and Acrobot problems are studied to demonstrate the successful application of the relevant techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution time of the online optimization problems inherent to Model Predictive Control (MPC) can become a critical limitation when working in embedded systems. One proposed approach to reduce the solution time is to split the optimization problem into a number of reduced order problems, solve such reduced order problems in parallel and selecting the solution which minimises a global cost function. This approach is known as Parallel MPC. The potential capabilities of disturbance rejection are introduced using a simulation example. The algorithm is implemented in a linearised model of a Boeing 747-200 under nominal flight conditions and with an induced wind disturbance. Under significant output disturbances Parallel MPC provides a significant improvement in performance when compared to Multiplexed MPC (MMPC) and Linear Quadratic Synchronous MPC (SMPC). © 2013 IEEE.