16 resultados para LAA occlusion
Resumo:
We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.
Resumo:
This paper presents a volumetric formulation for the multi-view stereo problem which is amenable to a computationally tractable global optimisation using Graph-cuts. Our approach is to seek the optimal partitioning of 3D space into two regions labelled as "object" and "empty" under a cost functional consisting of the following two terms: (1) A term that forces the boundary between the two regions to pass through photo-consistent locations and (2) a ballooning term that inflates the "object" region. To take account of the effect of occlusion on the first term we use an occlusion robust photo-consistency metric based on Normalised Cross Correlation, which does not assume any geometric knowledge about the reconstructed object. The globally optimal 3D partitioning can be obtained as the minimum cut solution of a weighted graph.
Resumo:
We demonstrate a new method for extracting high-level scene information from the type of data available from simultaneous localisation and mapping systems. We model the scene with a collection of primitives (such as bounded planes), and make explicit use of both visible and occluded points in order to refine the model. Since our formulation allows for different kinds of primitives and an arbitrary number of each, we use Bayesian model evidence to compare very different models on an even footing. Additionally, by making use of Bayesian techniques we can also avoid explicitly finding the optimal assignment of map landmarks to primitives. The results show that explicit reasoning about occlusion improves model accuracy and yields models which are suitable for aiding data association. © 2011. The copyright of this document resides with its authors.
Resumo:
Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum.We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologramplane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique. © 2009 Optical Society of America.
Resumo:
In this paper, we propose a vision based mobile robot localization strategy. Local scale-invariant features are used as natural landmarks in unstructured and unmodified environment. The local characteristics of the features we use prove to be robust to occlusion and outliers. In addition, the invariance of the features to viewpoint change makes them suitable landmarks for mobile robot localization. Scale-invariant features detected in the first exploration are indexed into a location database. Indexing and voting allow efficient recognition of global localization. The localization result is verified by epipolar geometry between the representative view in database and the view to be localized, thus the probability of false localization will be decreased. The localization system can recover the pose of the camera mounted on the robot by essential matrix decomposition. Then the position of the robot can be computed easily. Both calibrated and un-calibrated cases are discussed and relative position estimation based on calibrated camera turns out to be the better choice. Experimental results show that our approach is effective and reliable in the case of illumination changes, similarity transformations and extraneous features. © 2004 IEEE.
Resumo:
This paper proposes a novel framework to construct a geometric and photometric model of a viewed object that can be used for visualisation in arbitrary pose and illumination. The method is solely based on images and does not require any specialised equipment. We assume that the object has a piece-wise smooth surface and that its reflectance can be modelled using a parametric bidirectional reflectance distribution function. Without assuming any prior knowledge on the object, geometry and reflectance have to be estimated simultaneously and occlusion and shadows have to be treated consistently. We exploit the geometric and photometric consistency using the fact that surface orientation and reflectance are local invariants. In a first implementation, we demonstrate the method using a Lambertian object placed on a turn-table and illuminated by a number of unknown point light-sources. A discrete voxel model is initialised to the visual hull and voxels identified as inconsistent with the invariants are removed iteratively. The resulting model is used to render images in novel pose and illumination. © 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.
Resumo:
The use of mixture-model techniques for motion estimation and image sequence segmentation was discussed. The issues such as modeling of occlusion and uncovering, determining the relative depth of the objects in a scene, and estimating the number of objects in a scene were also investigated. The segmentation algorithm was found to be computationally demanding, but the computational requirements were reduced as the motion parameters and segmentation of the frame were initialized. The method provided a stable description, in whichthe addition and removal of objects from the description corresponded to the entry and exit of objects from the scene.
Resumo:
We study unsupervised learning in a probabilistic generative model for occlusion. The model uses two types of latent variables: one indicates which objects are present in the image, and the other how they are ordered in depth. This depth order then determines how the positions and appearances of the objects present, specified in the model parameters, combine to form the image. We show that the object parameters can be learnt from an unlabelled set of images in which objects occlude one another. Exact maximum-likelihood learning is intractable. However, we show that tractable approximations to Expectation Maximization (EM) can be found if the training images each contain only a small number of objects on average. In numerical experiments it is shown that these approximations recover the correct set of object parameters. Experiments on a novel version of the bars test using colored bars, and experiments on more realistic data, show that the algorithm performs well in extracting the generating causes. Experiments based on the standard bars benchmark test for object learning show that the algorithm performs well in comparison to other recent component extraction approaches. The model and the learning algorithm thus connect research on occlusion with the research field of multiple-causes component extraction methods.
Resumo:
A holographic rendering algorithm using a layer-based structure with angular tiling supports view-dependent shading and accommodation cues. This approach also has the advantages of rapid computation speed and visual reduction of layer gap artefacts compared to other approaches. Holograms rendered with this algorithm are displayed using an SLM to demonstrate view-dependent shading and occlusion. © 2013 SPIE-IS&T.