18 resultados para HISTORICAL DATA-ANALYSIS
Resumo:
Vibration methods are used to identify faults, such as spanning and loss of cover, in long off-shore pipelines. A pipeline `pig', propelled by fluid flow, generates transverse vibration in the pipeline and the measured vibration amplitude reflects the nature of the support condition. Large quantities of vibration data are collected and analyzed by Fourier and wavelet methods.
Resumo:
Compared with construction data sources that are usually stored and analyzed in spreadsheets and single data tables, data sources with more complicated structures, such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our definition and vision for advanced data analysis addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data analysis on text-based, image-based, web-based, and network-based construction sources. It is shown in this paper that particular data preparation, representation, and analysis operations should be identified, and integrated with careful problem investigations and scientific validation measures in order to provide general frameworks in support of information search and knowledge discovery from such information-abundant data sources.
Resumo:
The measured time-history of the cylinder pressure is the principal diagnostic in the analysis of processes within the combustion chamber. This paper defines, implements and tests a pressure analysis algorithm for a Formula One racing engine in MATLAB1. Evaluation of the software on real data is presented. The sensitivity of the model to the variability of burn parameter estimates is also discussed. Copyright © 1997 Society of Automotive Engineers, Inc.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.