22 resultados para Ground-effect machines
The effect of a twin tunnel on the propagation of ground-borne vibration from an underground railway
Resumo:
Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought after in modern urban centres. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this system. One such commonly made assumption is to ignore the effects of neighbouring tunnels, despite the fact that many underground railway lines consist of twin-bored tunnels, one for the outbound direction and one for the inbound direction. This paper presents a unique model for two tunnels embedded in a homogeneous, elastic fullspace. Each of these tunnels is subject to both known, dynamic train forces and dynamic cavity forces. The net forces acting on the tunnels are written as the sum of those tractions acting on the invert of a single tunnel, and those tractions that represent the motion induced by the neighbouring tunnel. By apportioning the tractions in this way, the vibration response of a two-tunnel system is written as a linear combination of displacement fields produced by a single-tunnel system. Using Fourier decomposition, forces are partitioned into symmetric and antisymmetric modenumber components to minimise computation times. The significance of the interactions between two tunnels is quantified by calculating the insertion gains, in both the vertical and horizontal directions, that result from the existence of a second tunnel. The insertion-gain results are shown to be localised and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20 dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration prediction model that includes only one of the two tunnels. This novel two-tunnel solution represents a significant contribution to the existing body of research into vibration from underground railways, as it shows that the second tunnel has a significant influence on the accuracy of vibration predictions for underground railways. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ground vibration due to underground railways is a significant source of disturbance for people living or working near subways. Numerical models are commonly used to predict vibration levels; however, uncertainty inherent to these simulations must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of uncertainty in soil material properties on the surface vibration of layered halfspaces excited by an underground railway. The half-space is simulated using the thin-layer method coupled with the pipe-in-pipe (PiP) method for determining the load on the buried tunnel. The K-L expansion method is employed to smoothly vary the material properties throughout the soil by up to 10%. The simulation predicts a surface rms velocity variation of 5-10dB compared to a homogeneous, layered halfspace. These results suggest it may be prudent to include a 5dB error band on predicted vibration levels when simulating areas of varied material properties.
Resumo:
Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect ( ± 10dB) on the surface vibration response. © 2009 IOP Publishing Ltd.