23 resultados para Free-running laser
Radio over free space optical link using a directly modulated two-electrode high power tapered laser
Resumo:
High-power (more than 500 mW) and high-speed (more than 1 Gbps) tapered lasers at 1060 nm are required in free-space optical communications and (at lower frequencies of around 100 MHz) display applications for frequency doubling to the green. On a 3 mm long tapered laser, we have obtained an open eye diagram at 1 Gbps, together with a high extinction ratio of 11 dB, an optical modulation amplitude of 530 mW, and a high modulation efficiency of 13 W/A. On a 4 mm-long tapered laser, we have obtained an open eye diagram at 700 Mbps, together with a high extinction ratio of 19 dB, a high optical modulation amplitude of 1.6 W, and a very high modulation efficiency of 19 W/A. On a 6 mm-long tapered laser, we have obtained a very high power of 5W CW and a very high static modulation efficiency of 59.8 W/A. © 2011 SPIE.
Resumo:
RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © 2011 OSA.
Resumo:
A free space optical wireless communication system with 3 degree angular coverage and 1.25 GHz modulation bandwidth is reported, in which relatively narrow laser beam of a simultaneous high power, high modulation speed and ultra high modulation efficiency directly modulated two-electrode tapered laser diode is steered using a nematic phase-only Liquid-Crystal On Silicon Spatial Light Modulator (LCOS SLM) by displaying reconfigurable 256 phase level gratings. © 1983-2012 IEEE.
Resumo:
RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © OSA/ CLEO 2011.
Radio over free space optical link using a directly modulated two-electrode high power tapered laser
Resumo:
The analog modulation performance of a high-power two-electrode tapered laser is investigated. A 25dB dynamic range for 2.4GHz 802.11g signals is achieved with a 26dB loss budget, showing a >1km free space range is possible. © 2010 Optical Society of America.
Resumo:
A single-contact, mode-hop-free, single longitudinal mode laser operating cw under large signal modulation at 2.5 Gbit/s at room temperature was created by introducing a short etched region around the ridge-waveguide of a Fabry-Perot laser. The device could be suitable for use in extended range data communications applications.
Resumo:
It is shown that 2D lattice gratings, despite being placed outside the waveguide region, exhibit sufficiently strong coupling coefficients that optical modes rapidly couple transversely into the etched grating region, yielding high coupling coefficients of 270cm-1. This performance allows mode-hop-free lasing operation in DBR structures.
Resumo:
Simultaneous high power (2W), high modulation speed (1Gb/s) and high modulation efficiency (14 W/A) operation of a two-electrode tapered laser is reported. © 2011 IEEE.
Resumo:
Atmospheric effects can significantly degrade the reliability of free-space optical communications. One such effect is scintillation, caused by atmospheric turbulence, refers to random fluctuations in the irradiance and phase of the received laser beam. In this paper we inv stigate the use of multiple lasers and multiple apertures to mitigate scintillation. Since the scintillation process is slow, we adopt a block fading channel model and study the outage probability under the assumptions of orthogonal pulse-position modulation and non-ideal photodetection. Assuming perfect receiver channel state information (CSI), we derive the signal-to-noise ratio (SNR) exponents for the cases when the scintillation is lognormal, exponential and gammagamma distributed, which cover a wide range of atmospheric turbulence conditions. Furthermore, when CSI is also available at the transmitter, we illustrate very large gains in SNR are possible (in some cases larger than 15 dB) by adapting the transmitted power. Under a long-term power constraint, we outline fundamental design criteria via a simple expression that relates the required number of lasers and apertures for a given code rate and number of codeword blocks to completely remove system outages. Copyright © 2009 IEEE.