18 resultados para Fetal malformations (FM)
Resumo:
OBJECTIVE: To examine the role of androgens on birth weight in genetic models of altered androgen signalling. SETTING: Cambridge Disorders of Sex Development (DSD) database and the Swedish national screening programme for congenital adrenal hyperplasia (CAH). PATIENTS: (1) 29 girls with XY karyotype and mutation positive complete androgen insensitivity syndrome (CAIS); (2) 43 girls and 30 boys with genotype confirmed CAH. MAIN OUTCOME MEASURES: Birth weight, birth weight-for-gestational-age (birth weight standard deviation score (SDS)) calculated by comparison with national references. RESULTS: Mean birth weight SDS in CAIS XY infants was higher than the reference for girls (mean, 95% CI: 0.4, 0.1 to 0.7; p=0.02) and was similar to the national reference for boys (0.1, -0.2 to 0.4). Birth weight SDS in CAH girls was similar to the national reference for girls (0.0, -0.2 to 0.2) and did not vary by severity of gene mutation. Birth weight SDS in CAH boys was also similar to the national reference for boys (0.2, -0.2 to 0.6). CONCLUSION: CAIS XY infants have a birth weight distribution similar to normal male infants and birth weight is not increased in infants with CAH. Alterations in androgen signalling have little impact on birth weight. Sex dimorphism in birth size is unrelated to prenatal androgen exposure.
Resumo:
Osteogenesis imperfecta (OI or brittle bone disease) is a disorder of connective tissues caused by mutations in the collagen genes. We previously showed that intrauterine transplantation of human blood fetal stem/stromal cells in OI mice (oim) resulted in a significant reduction of bone fracture. This work examines the cellular mechanisms and mechanical bone modifications underlying these therapeutic effects, particularly examining the direct effects of donor collagen expression on bone material properties. In this study, we found an 84% reduction in femoral fractures in transplanted oim mice. Fetal blood stem/stromal cells engrafted in bones, differentiated into mature osteoblasts, expressed osteocalcin, and produced COL1a2 protein, which is absent in oim mice. The presence of normal collagen decreased hydroxyproline content in bones, altered the apatite crystal structure, increased the bone matrix stiffness, and reduced bone brittleness. In conclusion, expression of normal collagen from mature osteoblast of donor origin significantly decreased bone brittleness by improving the mechanical integrity of the bone at the molecular, tissue, and whole bone levels.
Resumo:
This book explores the processes for retrieval, classification, and integration of construction images in AEC/FM model based systems. The author describes a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval that have been integrated into a novel method for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks. objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.