265 resultados para FINITE SETS
Resumo:
We propose a computational method for the coupled simulation of a compressible flow interacting with a thin-shell structure undergoing large deformations. An Eulerian finite volume formulation is adopted for the fluid and a Lagrangian formulation based on subdivision finite elements is adopted for the shell response. The coupling between the fluid and the solid response is achieved via a novel approach based on level sets. The basic approach furnishes a general algorithm for coupling Lagrangian shell solvers with Cartesian grid based Eulerian fluid solvers. The efficiency and robustness of the proposed approach is demonstrated with a airbag deployment simulation. It bears emphasis that in the proposed approach the solid and the fluid components as well as their coupled interaction are considered in full detail and modeled with an equivalent level of fidelity without any oversimplifying assumptions or bias towards a particular physical aspect of the problem.
Resumo:
This paper extends the air-gap element (AGE) to enable the modeling of flat air gaps. AGE is a macroelement originally proposed by Abdel-Razek et al.for modeling annular air gaps in electrical machines. The paper presents the theory of the new macroelement and explains its implementation within a time-stepped finite-element (FE) code. It validates the solution produced by the new macroelement by comparing it with that obtained by using an FE mesh with a discretized air gap. It then applies the model to determine the open-circuit electromotive force of an axial-flux permanent-magnet machine and compares the results with measurements.
Resumo:
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.
Resumo:
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.