98 resultados para EXPERIMENTAL REALIZATION
Resumo:
Carbon nanotube is one of the promising materials for exploring new concepts in solar energy conversion and photon detection. Here, we report the first experimental realization of a single core/shell nanowire photovoltaic device (2-4μm) based on carbon nanotube and amorphous silicon. Specifically, a multi-walled carbon nanotube (MWNTs) was utilized as the metallic core, on which n-type and intrinsic amorphous silicon layers were coated. A Schottky junction was formed by sputtering a transparent conducting indium-tin-oxide layer to wrap the outer shell of the device. The single coaxial nanowire device showed typical diode ratifying properties with turn-on voltage around 1V and a rectification ratio of 104 when biased at ±2V. Under illumination, it gave an open circuit voltage of ∼0.26V. Our study has shown a simple and useful platform for gaining insight into nanowire charge transport and collection properties. Fundamental studies of such nanowire device are important for improving the efficiency of future nanowire solar cells or photo detectors. © 2012 IEEE.
Resumo:
Flutter and divergence instabilities have been advocated to be possible in elastic structures with Coulomb friction, but no direct experimental evidence has ever been provided. Moreover, the same types of instability can be induced by tangential follower forces, but these are commonly thought to be of extremely difficult, if not impossible, practical realization. Therefore, a clear experimental basis for flutter and divergence induced by friction or follower-loading is still lacking. This is provided for the first time in the present article, showing how a follower force of tangential type can be realized via Coulomb friction and how this, in full agreement with the theory, can induce a blowing-up vibrational motion of increasing amplitude (flutter) or an exponentially growing motion (divergence). In addition, our results show the limits of a treatment based on the linearized equations, so that nonlinearities yield the initial blowing-up vibration of flutter to reach eventually a steady state. The presented results give full evidence to potential problems in the design of mechanical systems subject to friction, open a new perspective in the realization of follower-loading systems and of innovative structures exhibiting 'unusual' dynamical behaviors. © 2011 Elsevier Ltd.
Resumo:
We demonstrate the design, fabrication and experimental characterization of submicron-scale silicon waveguide fabricated by local oxidation of silicon and provide guidelines for controlling its profile. Near field measurements shows submicron confinement of the optical mode. © 2010 Optical Society of America.
Resumo:
Previous investigations have unveiled size effects in the strength of metallic foams under simple shear - the shear strength increases with diminishing specimen size, a phenomena similar to that shown by Fleck et al. (Acta Mat., 1994, Vol. 42, p. 475.) on the torsion tests of copper wires of various radii. In this study, experimental study of the constrained deformation of a foam layer sandwiched between two steel plates has been conducted. The sandwiched plates are subjected to combined shear and normal loading. It is found that measured yield loci of metallic foams in the normal and shear stress space corresponding to various foam layer thicknesses are self-similar in shape but their size increases as the foam layer thickness decreases. Moreover, the strains profiles across the foam layer thickness are parabolic instead of uniform; their values increase from the interfaces between the foam layer and the steel plates and reach their maximum in the middle of the foam layer, yielding boundary layers adjacent to the steel plates. In order to further explore the origin of observed size effects, micromechanics models have been developed, with the foam layer represented by regular and irregular honeycombs. Though the regular honeycomb model is seen to underestimate the size effects, the irregular honeycomb model faithfully captures the observed features of the constrained deformation of metallic foams.
Resumo:
In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition. Therefore, besides throttle opening control and VVT shifting, cyclic and individual cylinder fuel injection control is necessary to achieve a smooth transition. The control method was developed and implemented in a test engine, and the result was a considerably reduced NIMEP fluctuation during the mode switch. The instantaneous AFR and RGF measurements could furthermore be adopted to develop more sophisticated control methods for SI-HCCI-SI transitions. © 2010 SAE International.
Resumo:
A full-scale experimental study on the structural performance of load-bearing wall panels made of cold-formed steel frames and boards is presented. Six different types of C-channel stud, a total of 20 panels with one middle stud and 10 panels with two middle studs were tested under vertical compression until failure. For panels, the main variables considered are screw spacing (300 mm, 400 mm, or 600 mm) in the middle stud, board type (oriented strand board - OSB, cement particle board - CPB, or calcium silicate board - CSB), board number (no sheathing, one-side sheathing, or two-side sheathing), and loading type (1, 3, or 4-point loading). The measured load capacity of studs and panels agrees well with analytical prediction. Due to the restraint by rivet connections between stud and track, the effective length factor for the middle stud and the side stud in a frame (unsheathed panel) is reduced to 0.90 and 0.84, respectively. The load carrying capacity of a stud increases significantly whenever one- or two-side sheathing is used, although the latter is significantly more effective. It is also dependent upon the type of board used. Whereas panels with either OSB or CPB boards have nearly identical load carrying capacity, panels with CSB boards are considerably weaker. Screw spacing affects the load carrying capacity of a stud. When the screw spacing on the middle stud in panels with one-side sheathing is reduced from 600 mm to 300 mm, its load carrying capacity increases by 14.5 %, 20.6% and 94.2% for OSB, CPB and CSB, respectively.