16 resultados para Diesel emission reduction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. © 2013 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy Piles present an efficient solution for long-term carbon emission reduction and sustainable construction. However, they have received only partial acceptance by the industry, because of concerns regarding the impact of cyclic thermal changes on the serviceability of energy pile foundations. This paper investigates the applicability of the hybrid load transfer approach to load-settlement analysis of single piles behavior during thermal energy exchange processes. Back-analysis results in terms of the thermal and mechanical response of energy piles show good agreement with field test results from Lambeth College in London. © ASCE 2011.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is part of a larger PhD research project examining the apparent conflict in UK planning between energy efficiency and conservation for the retrofit of the thermal envelope of the existing building stock. Review of the literature shows that the UK will not meet its 2050 emission reduction target without substantial improvement to the energy performance of the thermal envelope of the existing building stock and that significantly, 40% of the existing stock has heritage status and may be exempted from Building Regulations. A review of UK policy and legislation shows that there are clear national priorities towards reducing emissions and addressing climate change, yet also shows a movement towards local decision making and control. This paper compares the current status of thirteen London Boroughs in respect to their position on thermal envelope retrofit for heritage and traditionally constructed buildings. Data collection is through ongoing surveys and interviews that compare statistical data, planning policies, sustainability and environmental priorities, and Officer decision-making. This paper finds that there is a lack of consistency in application of planning policy across Boroughs and suggests that this is a barrier to the up-take of energy efficient retrofit. Various recommendations are suggested at both national and local level which could help UK planning and planning officers deliver more energy efficient heritage retrofits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the growth of crack-free blue and greenemitting LED structures grown on 2-inch and 6-inch Si(111) substrates by metalorganic vapour phase epitaxy (MOVPE), using AlN nucleation layers and AlGaN buffer layers for stress management. LED device performance and its dependence on threading dislocation (TD) density and emission wavelength were studied. Despite the inherently low light extraction efficiency, an output power of 1.2 mW at 50 mA was measured from a 500 μm square planar device, emitting at 455 nm. The light output decreases dramatically as the emission wavelength increases from 455 nm to 510 nm. For LED devices emitting at similar wavelength, the light output was more than doubled when the TD density was reduced from 5×1 09 cm-2 to 2×109 cm-2. Our results clearly show that high TD density is detrimental to the overall light output, highlighting the need for further TD reduction for structures grown on Si. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (∼50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two- phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed. In an effort to identify CPU cost reduction potential, various dimensionality reduction strategies have been assessed. Furthermore, the sensitivity of the predictions with respect to resolution in particular relating to the CMC grid has been investigated. Overall, the results suggest that the presented modelling strategy has considerable predictive capability concerning Diesel engine combustion without requiring model constant calibration based on experimental data. This is true particularly for the heat release rates predictions and, to a lesser extent, for NOx emissions where further progress is still necessary. © 2009 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new experimental configuration has been developed to examine the effects of flow on the autoignition of dilute diesel and biodiesel sprays, where the spray is injected in the form of monodisperse individual droplets at right angles to a hot air turbulent flow. The ignition location has been measured by monitoring the OH * chemiluminescence. A qualitative comparison of the flame behaviour between ethanol, acetone, heptane and biodiesel as fuels has also been carried out. With decreasing volatility of the fuel, the flame showed progressively a higher number of individual droplets burning, with the first autoignition spots appearing at random locations but in general earlier than the intense droplet-flame emission. The time-averaged autoignition length increased with increasing air velocity and with increasing intensity of the turbulence, while it decreased with the temperature and the droplet size. The data can be used for validating models for two-phase turbulent combustion. © 2012 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strongly enhanced light emission at wavelengths between 1.3 and 1.6 μm is reported at room temperature in silicon photonic crystal (PhC) nanocavities with optimized out-coupling efficiency. Sharp peaks corresponding to the resonant modes of PhC nanocavities dominate the broad sub-bandgap emission from optically active defects in the crystalline Si membrane. We measure a 300-fold enhancement of the emission from the PhC nanocavity due to a combination of far-field enhancement and the Purcell effect. The cavity enhanced emission has a very weak temperature dependence, namely less than a factor of 2 reduction between 10 K and room temperature, which makes this approach suitable for the realization of efficient light sources as well as providing a quick and easy tool for the broadband optical characterization of silicon-on-insulator nanostructures. © 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface states in semiconductor nanowires (NWs) are detrimental to the NW optical and electronic properties and to their light emission-based applications, due to the large surface-to-volume ratio of NWs and the congregation of defects states near surfaces. In this paper, we demonstrated an effective approach to eliminate surface states in InAs NWs of zinc-blende (ZB) and wurtzite (WZ) structures and a dramatic recovery of band edge emission through surface passivation with organic sulfide octadecylthiol (ODT). Microphotoluminescence (PL) measurements were carried out before and after passivation to study the dominant recombination mechanisms and surface state densities of the NWs. For WZ-NWs, we show that the passivation removed the surface states and recovered the band-edge emission, leading to a factor of ∼19 reduction of PL linewidth. For ZB-NWs, the deep surface states were removed and the PL peaks width became as narrow as ∼250 nm with some remaining emission of near band-edge surface states. The passivated NWs showed excellent stability in atmosphere, water, and heat environments. In particular, no observable changes occurred in the PL features from the passivated NWs exposed in air for more than five months.