201 resultados para Diesel Fuel.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two- phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed. In an effort to identify CPU cost reduction potential, various dimensionality reduction strategies have been assessed. Furthermore, the sensitivity of the predictions with respect to resolution in particular relating to the CMC grid has been investigated. Overall, the results suggest that the presented modelling strategy has considerable predictive capability concerning Diesel engine combustion without requiring model constant calibration based on experimental data. This is true particularly for the heat release rates predictions and, to a lesser extent, for NOx emissions where further progress is still necessary. © 2009 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rich combustion of n-heptane, diesel oil, jet A-1 kerosene, and bio-diesel (rapeseed-oil methyl ester) were studied to produce hydrogen enriched gas, ready for the cleanup stages for fuel cell applications. n-heptane was successfully reformed up to an equivalence ratio of 3:1, reaching a conversion efficiency up to 83% for a packed bed of alumina bead burner. Diesel, kerosene and bio-diesel were reformed to synthesis gas with conversion efficiency up to 65%. At equivalence ratio of 2:1 and P=7 kw, stability, low HC formation, high conversion efficiency, and low soot emission were achieved. A common synthesis gas composition around this condition was 15 and 13% H2, 15 and 17% CO, and 4 and 4.5% CO2 for n-heptane and diesel, jet A-1 and bio-diesel, respectively, for burner A. This is an abstract of a paper presented at the 2010 Spring National Meeting (San Antonio, TX 3/21-25/2010).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new experimental configuration has been developed to examine the effects of flow on the autoignition of dilute diesel and biodiesel sprays, where the spray is injected in the form of monodisperse individual droplets at right angles to a hot air turbulent flow. The ignition location has been measured by monitoring the OH * chemiluminescence. A qualitative comparison of the flame behaviour between ethanol, acetone, heptane and biodiesel as fuels has also been carried out. With decreasing volatility of the fuel, the flame showed progressively a higher number of individual droplets burning, with the first autoignition spots appearing at random locations but in general earlier than the intense droplet-flame emission. The time-averaged autoignition length increased with increasing air velocity and with increasing intensity of the turbulence, while it decreased with the temperature and the droplet size. The data can be used for validating models for two-phase turbulent combustion. © 2012 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel smoke sensor was used to measure the smoke response to the fuel rack on a diesel engine. The conventional modelling methods used for engine control were investigated. The synchronization technique and Recursive Least Square method were applied to engine modelling and two models for controller design were derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses a patent data set to identify factors fostering innovation of diesel engines between 1974 and 2010 in the OECD region. The propensity of engine producers to innovate grew by 1.9 standard deviations after the expansion of the car market, by 0.7 standard deviations following a shift in the EU fuel economy standard, and by 0.23 standard deviations. The propensity to develop emissions control techniques was positively influenced by pollution control laws introduced in Japan, in the US, and in the EU, but not with the expansion of the car market. Furthermore, a decline in loan rates stimulated the propensity to develop emissions control techniques, which were simultaneously crowded out by increases in publicly-funded transport research and development. Innovation activities in engine efficiency are explained by market size, loan rates and by (Organisation for Economic Cooperation and Development) diesel prices, inclusive of taxes. Price effects on innovation, outweigh that of the US corporate average fuel economy standards. Innovation is also positively influenced by past transport research and development. © 2014 Elsevier Ltd.