26 resultados para Design challenges


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the practice of inclusive design in an industrial context and to gain an insight into the industrial perspectives, eight UK design consultancies' participation of the DBA design Challenges were reviewed through formal interviews. It is found that progress has been made in raising inclusive design awareness. However, some useful practices such as the user involvement in the design process is found not feasible in real situation, largely because of the often tight schedule and the complexity of the task. Consequently effective ways of capturing user information needs exploration and accessible design support tools need to be provided, through working with designers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO2 fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO2 core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO2 core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO2 core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO2 fuel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on an investigation into fuel design choices of a pressurized water reactor operating in a self-sustainable Th- 233U fuel cycle. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. The calculations were carried out with Monte-Carlo based BGCore code system and the results were compared to those obtained with Serpent Monte-Carlo code and deterministic transport code BOXER. One of the major design challenges associated with the SB concept is high power peaking due to the high concentration of fissile material in the seed region. The second objective of this work is to estimate the maximum achievable core power density by evaluation of limiting thermal hydraulic parameters. The analysis showed that both fuel assembly designs have a potential of achieving net breeding. Although hexagonal lattice was found to be somewhat more favorable because it allows achieving higher power density, while having breeding performance comparable to the square lattice case. © Carl Hanser Verlag München.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with 235U is necessary, and the 235U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO2-UO2) fuel cycle of no less than 25% uranium becomes necessary for normal pressurized water reactor (PWR) operating cycle lengths. Spatial separation of the uranium and thorium parts of the fuel can improve the achievable burnup of the thorium-uranium fuel designs through more effective breeding of 233U from the 232Th. Focus is on microheterogeneous fuel designs for PWRs, where the spatial separation of the uranium and thorium is on the order of a few millimetres to a few centimetres, including duplex pellet, axially microheterogeneous fuel, and a checkerboard of uranium and thorium pins. A special effort was made to understand the underlying reactor physics mechanisms responsible for enhancing the achievable burnup at spatial separation of the two fuels. The neutron spectral shift was identified as the primary reason for the enhancement of burnup capabilities. Mutual resonance shielding of uranium and thorium is also a factor; however, it is small in magnitude. It is shown that the microheterogeneous fuel can achieve higher burnups, by up to 15%, than the reference all-uranium fuel. However, denaturing of the 233U in the thorium portion of the fuel with small amounts of uranium significantly impairs this enhancement. The denaturing is also necessary to meet conventional PWR thermal limits by improving the power share of the thorium region at the beginning of fuel irradiation. Meeting thermal-hydraulic design requirements by some of the microheterogeneous fuels while still meeting or exceeding the burnup of the all-uranium case is shown to be potentially feasible. However, the large power imbalance between the uranium and thorium regions creates several design challenges, such as higher fission gas release and cladding temperature gradients. A reduction of plutonium generation by a factor of 3 in comparison with all-uranium PWR fuel using the same initial 235U content was estimated. In contrast to homogeneously mixed U-Th fuel, microheterogeneous fuel has a potential for economic performance comparable to the all-UO2 fuel provided that the microheterogeneous fuel incremental manufacturing costs are negligibly small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Silent Aircraft Initiative goal is to design an aircraft that is imperceptible above background noise outside the airport boundary. The aircraft that fulfils this objective must also be economically competitive with conventional aircraft of the future and therefore fuel consumption and mechanical reliability are key considerations for the design. To meet these ambitious targets, a multi-fan embedded turbofan engine with boundary layer ingestion has been proposed. This configuration includes several new technologies including a variable area nozzle, a complex high-power transmission system, a Low Pressure turbine designed for low-noise, an axial-radial HP compressor, advanced acoustic liners and a low-speed fan optimized for both cruise and off-design operation. These technologies, in combination, enable a low-noise and fuel efficient propulsion system but they also introduce significant challenges into the design. These challenges include difficulties in predicting the noise and performance of the new components but there are also challenges in reducing the design risks and proving that the new concepts are realizable. This paper presents the details of the engine configuration that has been developed for the Silent Aircraft application. It describes the design approach used for the critical components and discusses the benefits of the new technologies. The new technologies are expected to offer significant benefits in noise reduction without compromising fuel burn. However, more detailed design and further research are required to fully control the additional risks generated by the system complexity.

Relevância:

40.00% 40.00%

Publicador: