92 resultados para Dental enamel, erosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of erosive wear have been measured for a series of eight polyester-based one-component castable polyurethane elastomers, with widely varying mechanical properties. Erosion tests were conducted with airborne silica sand, 120μm in particle size, at an impact velocity of 50 ms-1 and impact angles of 30° and 90°. For these materials, which all showed similar values of rebound resilience, the erosion rate increased with increasing hardness, tensile modulus and tensile strength. These findings are at variance with those expected for wear by abrasion, perhaps because of differences in the strain rate or strain levels imposed on the elastomer during erosion and abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to find a link between results obtained from a laboratory erosion tester and tests carried out on a pneumatic conveyor, a comparison has been made between weight loss from bends on an industrial-scale pneumatic conveyor and erosion rates obtained in a small centrifugal erosion tester, for the same materials. Identical test conditions have been applied to both experiments so that comparable test results have been obtained. The erosion rate of mild steel commonly used as the wall material of conveyor pipes and pipe bends was determined individually on both test rigs. A relationship between weight loss from the bends and erosion rate determined from the tester has been developed. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slurry erosion-corrosion behaviour of aluminium in aqueous silica slurries containing 0.5 M NaCl, acetic acid and 0.1 M Na2CO3 at open circuit has been investigated using a modified slurry erosion rig. The erosion rates of aluminium in the NaCl and acetic acid slurries were much higher than those in an aqueous slurry without electrolyte additives even though the pure corrosion component was very small. Eroded specimens were examined by scanning electron and optical microscopy. In pure aqueous slurry erosion, the basic mechanism leading to mass loss was the ductile fracture of flakes formed on the eroded surface. In corrosive slurries, however, the mass loss was enhanced by cracking of the flakes induced by stress and corrosion. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface coatings and treatments have been used to reduce material loss of components in bubbling fluidized bed combustors (FBCs). The performance of protective coatings in FBC boilers and laboratory simulations is reviewed. Important coating properties to minimize wastage appear to be high hardness, low oxidation rate, low porosity, high adhesion and sufficient thickness to maintain protection for a long period. Economic considerations and criteria for choosing a suitable coating or treatment are discussed for the different types of bubbling FBC. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thinning of heat-exchanger tubes by erosion-corrosion has been a problem in fluidized bed combustors (FBCs), particularly at lower metal temperatures where thicker, mechanically protective oxide scales are unable to form. Many laboratory-scale tests have shown a decrease in material loss at higher temperatures, in a similar manner to FBC boilers, but also show a decrease in wastage at low temperatures (e.g. 200°C) which has not been detected in boilers. It has been suggested that this difference is due to laboratory tests being carried out isothermally whereas in a FBC boiler the fluidized bed is considerably hotter than the metal heat exchanger tubing. In this laboratory study the simulation was therefore improved by internally cooling one of the two low carbon steel specimens. These were rotated in a horizontal plane within a lightly fluidized bed with relative particle velocities of 1.3-2.5 m s-1. Tests were carried out over a range of bed temperatures (200-500°C) and cooled specimen surface temperatures (115-500°C), with a maximum temperature difference between the two of 320°C. Although specimens exposed isothermally still showed maximum wastage at intermediate temperatures (about 350°C), those which were cooled showed high levels of wastage at temperatures as low as 200°C in a similar manner to FBC boilers. Cooling may modify the isothermal erosion-corrosion curve, causing it to broaden and the maximum wastage rate to shift to lower temperatures. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been performed of the erosion of aluminium by silica sand particles at a velocity of 4.5 m s-1, both air-borne and in the form of a water-borne slurry. Measurements made under similar experimental conditions show that slurry erosion proceeds at a rate several times that of air-borne erosion, the ratio of the two rates depending strongly on the angle of impact. Sand particles become embedded into the metal surface during air-borne particle erosion, forming a composite layer of metal and silica, and provide the major cause of the difference in wear rate. The embedded particles giving rise to surface hardening and a significant reduction in the erosion rate. Embedment of erodent particles was not observed during slurry erosion. Lubrication of the impacting interfaces by water appears to have minimal effect on the wear of aluminium by slurry erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method is used to analyze the elastodynamic response of a columnar thermal barrier coating due to normal impact and oblique impact by an erosive particle. An assessment is made of the erosion by crack growth from preexisting flaws at the edge of each column: it is demonstrated that particle impacts can be sufficiently severe to give rise to columnar cracking. First, the transient stress state induced by the normal impact of a circular cylinder or a sphere is calculated in order to assess whether a 2D calculation adequately captures the more realistic 3D behavior. It is found that the transient stress states for the plane strain and axisymmetric models are similar. The sensitivity of response to particle diameter and to impact velocity is determined for both the cylinder and the sphere. Second, the transient stress state is explored for 2D oblique impact by a circular cylindrical particle and by an angular cylindrical particle. The sensitivity of transient tensile stress within the columns to particle shape (circular and angular), impact angle, impact location, orientation of the angular particle, and to the level of friction is explored in turn. The paper concludes with an evaluation of the effect of inclining the thermal barrier coating columns upon their erosion resistance. © 2011 The American Ceramic Society.