30 resultados para Debye shielding
Resumo:
The Silent Aircraft airframe has a flying wing design with a large wing planform and a propulsion system embedded in the rear of the airframe with intake on the upper surface of the wing. In the present paper, boundary element calculations are presented to evaluate acoustic shielding at low frequencies. Besides the three-dimensional geometry of the Silent Aircraft airframe, a few two-dimensional problems are considered that provide some physical insight into the shielding calculations. Mean flow refraction effects due to forward flight motion are accounted for by a simple time transformation that decouples the mean-flow and acoustic-field calculations. It is shown that significant amount of shielding can be obtained in the shadow region where there is no direct line of sight between the source and observer. The boundary element solutions are restricted to low frequencies. We have used a simple physically-based model to extend the solution to higher frequencies. Based on this model, using a monopole acoustic source, we predict at least an 18 dBA reduction in the overall sound pressure level of forward-propagating fan noise because of shielding.
Resumo:
We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets can also act as efficient magnetic shields. The magnetic screening properties under an axial DC magnetic field are characterized at several temperatures below the liquid nitrogen temperature (77 K). Two main shielding properties are studied and compared with those of Bi-2223, a material that has been considered in the past for bulk magnetic shields. The first property is related to the maximum magnetic flux density that can be screened, Blim; it is defined as the applied magnetic flux density below which the field attenuation measured at the centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to 1 T at T = 10 K. This value largely exceeds the Blim value measured at the same temperature on similar tubes of Bi-2223. The second shielding property that is characterized is the dependence of Blim with respect to variations of the sweep rate of the applied field, dBapp/dt. This dependence is interpreted in terms of the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this E(J) characteristics for Bi-2212. The characterization of the magnetic field relaxation involves very small values of the electric field. This gives us the opportunity to experimentally determine the E(J) law in an unexplored region of small electric fields. Combining these results with transport and AC shielding measurements, we construct a piecewise E(J) law that spans over 8 orders of magnitude of the electric field.
Resumo:
This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.
Resumo:
A superconducting magnetic shield can be built as a stack of several sections of milled 2G coated conductors. Each section consists of a closed loop where persistent currents can flow and provide a strong attenuation of external dc magnetic fields. The purpose of the present work is to study experimentally several geometries of such magnetic shields made out of YBa2Cu 3O7 (YBCO) coated conductors from SuperPower. Our aim is to investigate in detail the influence of the aspect ratio and the number of layers of the assembly on the magnetic shielding properties. In order to do so, the magnetic shield is subjected to an axial quasi-static ('dc') magnetic field ramped slowly at a fixed sweep rate. A Hall probe is used to measure the local magnetic induction inside the assembly as a function of the applied magnetic induction. Results show that the shielding factor, SF, (defined as the ratio between the applied magnetic induction and the magnetic induction measured inside the shield) is improved for increasing aspect ratios of the global coated conductor assembly and that the threshold magnetic induction (defined for SF = 10) increases with the number of layers. Using a double layer of 18 sections at T = 77K , dc magnetic fields up to 56 mT can be shielded by a factor larger than 10. Finally, the effect of an air gap of constant width between coated conductor sections is also characterized. © 2002-2011 IEEE.
Resumo:
This paper deals with the magnetic properties of bulk high temperature superconducting cylinders used as magnetic shields. We investigate, both numerically and experimentally, the magnetic properties of a hollow cylinder with two axial slits which cut the cylinder in equal halves. Finite element method modelling has been used with a three-dimensional geometry to help us in understanding how the superconducting currents flow in such a cut cylinder and therefore how the magnetic shielding properties are affected, depending on the magnetic field orientation. Modelling results show that the slits block the shielding current flow and act as an entrance channel for the magnetic flux lines. The contribution of the slits to the total flux density that enters the cylinder is studied through the angle formed between the applied field and the internal field. The modelled data agree nicely with magnetic shielding properties measured on a bulk Bi-2212 hollow cylinder at 77K. The results demonstrate that the magnetic flux penetration in such a geometry can be modelled successfully using only two parameters of the superconductor (constant J c and n value), which were determined from magnetic measurements on the plain cylinder. © 2012 IOP Publishing Ltd.
Resumo:
We study the magnetic shielding properties of hybrid ferromagnetic/ superconductor (F/S) structures consisting of two coaxial cylinders, with one of each material. We use an axisymmetric finite-element model in which the electrical properties of the superconducting tube are modeled by a nonlinear E-J power law with a magnetic-field-dependent critical current density whereas the magnetic properties of the ferromagnetic material take saturation into account. We study and compare the penetration of a uniform axial magnetic field in two cases: 1) a ferromagnetic tube placed inside a larger superconducting tube (Ferro-In configuration) and 2) a ferromagnetic tube placed outside the superconducting one (Ferro-Out configuration). In both cases, we assess how the ferromagnetic tube improves the shielding properties of the sole superconducting tube. The influence of the geometrical parameters of the ferromagnetic tube is also studied: It is shown that, upon an optimal choice of the geometrical parameters, the range of magnetic fields that are efficiently shielded by the high-temperature superconductor tube alone can be increased by a factor of up to 7 (2) in a Ferro-Out (Ferro-In) configuration. The optimal configuration uses a 1020 carbon steel with a thickness of 2 mm and a height that is half that of the superconducting cylinder (80 mm). © 2009 IEEE.
Resumo:
Magnetic shielding efficiency was measured on high- Tc superconducting hollow cylinders subjected to either an axial or a transverse magnetic field in a large range of field sweep rates, dBapp/dt. The behaviour of the superconductor was modelled in order to reproduce the main features of the field penetration curves by using a minimum number of free parameters suitable for both magnetic field orientations. The field penetration measurements were carried out on Pb-doped Bi-2223 tubes at 77K by applying linearly increasing magnetic fields with a constant sweep rate ranging between 10νTs-1 and 10mTs-1 for both directions of the applied magnetic field. The experimental curves of the internal field versus the applied field, Bin(Bapp), show that, at a given sweep rate, the magnetic field for which the penetration occurs, Blim, is lower for the transverse configuration than for the axial configuration. A power law dependence with large exponent, n′, is found between Blim and dBapp/dt. The values of n′ are nearly the same for both configurations. We show that the main features of the curves B in(Bapp) can be reproduced using a simple 2D model, based on the method of Brandt, involving a E(J) power law with an n-exponent and a field-dependent critical current density, Jc(B), (following the Kim model: Jc = Jc0(1+B/B1)-1). In particular, a linear relationship between the measured n′-exponents and the n-exponent of the E(J) power law is suggested by taking into account the field dependence of the critical current density. Differences between the axial and the transverse shielding properties can be simply attributed to demagnetizing fields. © 2009 IOP Publishing Ltd.