17 resultados para Construction Civil


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data fusion can be defined as the process of combining data or information for estimating the state of an entity. Data fusion is a multidisciplinary field that has several benefits, such as enhancing the confidence, improving reliability, and reducing ambiguity of measurements for estimating the state of entities in engineering systems. It can also enhance completeness of fused data that may be required for estimating the state of engineering systems. Data fusion has been applied to different fields, such as robotics, automation, and intelligent systems. This paper reviews some examples of recent applications of data fusion in civil engineering and presents some of the potential benefits of using data fusion in civil engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of image processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based construction site image retrieval method is presented. This method is based on image retrieval techniques, and specifically those related with material and object identification and matches known material samples with material clusters within the image content. The results demonstrate the suitability of this method for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent advances in urban wireless communications and protocols that spurred the development of city-wide wireless infrastructure motivated this research, since in many cases, construction sites are not conveniently located for wired connectivity. Large scale transportation projects for example, such as new highways, railroad tracks and the networks of utilities (power-lines, phone lines, mobile towers, etc) that usually follow them are constructed in areas where wired infrastructure for data exchange is often expensive and time-consuming to deploy. The communication difficulties that can be encountered in such construction sites can be addressed with a wireless communications link between the construction site and the decision-making office. This paper presents a case study on long-range, wireless communications suitable for data exchange between construction sites and engineering headquarters. The purpose of this study was to define the requirements for a reliable wireless communications model where common types of electronic construction data will be exchanged in a fast and efficient manner, and construction site personnel will be able to interact and share knowledge, information and electronic resources with the office staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to identify challenges in civil and environmental engineering that can potentially be solved using data sensing and analysis research. The challenges were recognized through extensive literature review in all disciplines of civil and environmental engineering. The literature review included journal articles, reports, expert interviews, and magazine articles. The challenges were ranked by comparing their impact on cost, time, quality, environment and safety. The result of this literature review includes challenges such as improving construction safety and productivity, improving roof safety, reducing building energy consumption, solving traffic congestion, managing groundwater, mapping and monitoring the underground, estimating sea conditions, and solving soil erosion problems. These challenges suggest areas where researchers can apply data sensing and analysis research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision based tracking can provide the spatial location of construction entities such as equipment, workers, and materials in large scale, congested construction sites. It tracks entities in video streams by inferring their locations based on the entities’ visual features and motion histories. To initiate the process, it is necessary to determine the pixel areas corresponding to the construction entities to be tracked in the following consecutive video frames. In order to fully automate the process, an automated way of initialization is needed. This paper presents the method for construction worker detection which can automatically recognize and localize construction workers in video frames. The method first finds the foreground areas of moving objects using a background subtraction method. Within these foreground areas, construction workers are recognized based on the histogram of oriented gradients (HOG) and histogram of the HSV colors. HOG’s have proved to work effectively for detection of people, and the histogram of HSV colors helps differentiate between pedestrians and construction workers wearing safety vests. Preliminary experiments show that the proposed method has the potential to automate the initialization process of vision based tracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision-based object detection has been introduced in construction for recognizing and locating construction entities in on-site camera views. It can provide spatial locations of a large number of entities, which is beneficial in large-scale, congested construction sites. However, even a few false detections prevent its practical applications. In resolving this issue, this paper presents a novel hybrid method for locating construction equipment that fuses the function of detection and tracking algorithms. This method detects construction equipment in the video view by taking advantage of entities' motion, shape, and color distribution. Background subtraction, Haar-like features, and eigen-images are used for motion, shape, and color information, respectively. A tracking algorithm steps in the process to make up for the false detections. False detections are identified by catching drastic changes in object size and appearance. The identified false detections are replaced with tracking results. Preliminary experiments show that the combination with tracking has the potential to enhance the detection performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital photographs of construction site activities are gradually replacing their traditional paper based counterparts. Existing digital imaging technologies in hardware and software make it easy for site engineers to take numerous photographs of “interesting” processes and activities on a daily basis. The resulting photographic data are evidence of the “as-built” project, and can therefore be used in a number of project life cycle tasks. However, the task of retrieving the relevant photographs needed in these tasks is often burdened by the sheer volume of photographs accumulating in project databases over time and the numerous objects present in each photograph. To solve this problem, the writers have recently developed a number of complementary techniques that can automatically classify and retrieve construction site images according to a variety of criteria (materials, time, date, location, etc.). This paper presents a novel complementary technique that can automatically identify linear (i.e., beam, column) and nonlinear (i.e., wall, slab) construction objects within the image content and use that information to enhance the performance of the writers’ existing construction site image retrieval approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technological advancements in digital imaging, the widespread popularity of digital cameras, and the increasing demand by owners and contractors for detailed and complete site photograph logs have triggered an ever-increasing growth in the rate of construction image data collection, with thousands of images being stored for each project. However, the sheer volume of images and the difficulties in accurately and manually indexing them have generated a pressing need for methods that can index and retrieve images with minimal or no user intervention. This paper reports recent developments from research efforts in the indexing and retrieval of construction site images in architecture, engineering, construction, and facilities management image database systems. The limitations and benefits of the existing methodologies will be presented, as well as an explanation of the reasons for the development of a novel image retrieval approach that not only can recognize construction materials within the image content in order to index images, but also can be compatible with existing retrieval methods, enabling enhanced results.