272 resultados para Computational geometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNS of planar turbulent flame and turbulent V-flame has been conducted to investigate turbulence-scalar interaction in relatively practical turbulent combustion. Several turbulence quantities are examined for the understandings of fundamental characteristics of flow field in V-flame. Due to the additional turbulence production by the hot-rod, turbulence does not simply decay in V-flame. Turbulence-scalar interaction, scalar alignments with the principal strain rate in other words, is then clarified. The competition of turbulence and dilatation can be found in the conditional PDF of flame normal alignment. The results suggests that the alignment characteristics in high Da flames are applicable to low Da flames in the region of intense heat release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper explores the influence of room geometry on the overturning of smoke owing to a centrally located floor fire, and examines the implications on smoke filling times. The focus is on presenting practical design guidelines based on the theoretical predictions of the model of Kaye and Hunt. An engineering platform is developed for the prediction of smoke filling times, and a rational basis is provided by way of which smoke behaviour can be specified for simple room designs. The time taken for smoke to fill a room to a given height is critically affected by the room aspect ratio and the characteristic size of the buoyancy source. At large times, taller (small aspect ratio) rooms are shown to fill with smoke at a faster rate than wide (large aspect ratio) rooms owing to large-scale overturning and engulfing of ambient air during the initial transients. Larger area sources of buoyancy also decrease significantly the smoke filling times, with important implications for fire and smoke safety design. Simplified design curves incorporating the main findings have been developed for use as a tool by practising fire-safety engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: It remains controversial whether patients with severe disease of the internal carotid artery and a coexisting stenotic lesion downstream would benefit from a carotid endarterectomy (CEA) of the proximal lesion. The aim of this study was to simulate the hemodynamic and wall shear effects of in-tandem internal carotid artery stenosis using a computational fluid dynamic (CFD) idealized model to give insight into the possible consequences of CEA on these lesions. METHODS: A CFD model of steady viscous flow in a rigid tube with two asymmetric stenoses was introduced to simulate blood flow in arteries with multiple constrictions. The effect of varying the distance between the two stenoses, and the severity of the upstream stenosis on the pressure and wall shear stress (WSS) distributions on the second plaque, was investigated. The influence of the relative positions of the two stenoses was also assessed. RESULTS: The distance between the plaques was found to have minimal influence on the overall hemodynamic effect except for the presence of a zone of low WSS (range -20 to 30 dyne/cm2) adjacent to both lesions when the two stenoses were sufficiently close (<4 times the arterial diameter). The upstream stenosis was protective if it was larger than the downstream stenosis. The relative positions of the stenoses were found to influence the WSS but not the pressure distribution. CONCLUSIONS: The geometry and positions of the lesions need to be considered when considering the hemodynamic effects of an in-tandem stenosis. Low WSS is thought to cause endothelial dysfunction and initiate atheroma formation. The fact that there was a flow recirculation zone with low WSS in between the two stenoses may demonstrate how two closely positioned plaques may merge into one larger lesion. Decision making for CEA may need to take into account the hemodynamic situation when an in-tandem stenosis is found. CFD may aid in the risk stratification of patients with this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a computational study of viscous effects on lobed mixer flowfields. The computations, which were carried out using a compressible, three-dimensional, unstructured-mesh Navier-Stokes solver, were aimed at assessing the impacts on mixer performance of inlet boundary-layer thickness and boundary-layer separation within the lobe. The geometries analyzed represent a class of lobed mixer configurations used in turbofan engines. Parameters investigated included lobe penetration angles from 22 to 45 deg, stream-to-stream velocity ratios from 0.5 to 1.0, and two inlet boundary-layer displacement thicknesses. The results show quantitatively the increasing influence of viscous effects as lobe penetration angle is increased. It is shown that the simple estimate of shed circulation given by Skebe et al. (Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Field, AIAA Paper 88-3785, July, 1988) can be extended even to situations in which the flow is separated, provided an effective mixer exit angle and height are defined. An examination of different loss sources is also carried out to illustrate the relative contributions of mixing loss and of boundary-layer viscous effects in cases of practical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anisotropic nature of fibre reinforced composites leads to large stress concentrations around pin-loaded holes through standard weave cloths. Proper understanding of how this anisotropic nature affects the load distribution around holes can be utilised to reduce these con-centrations if sufficient thought is given to the internal fibre geometry near to the hole. Such local reinforcements need not be highly complex and can be readily produced without excessive effort, producing significant improvements in performance. © 1996 Kluwer Academic Publishers.