36 resultados para Combinatorial optimization algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a need for a stronger theoretical understanding of Multidisciplinary Design Optimization (MDO) within the field. Having developed a differential geometry framework in response to this need, we consider how standard optimization algorithms can be modeled using systems of ordinary differential equations (ODEs) while also reviewing optimization algorithms which have been derived from ODE solution methods. We then use some of the framework's tools to show how our resultant systems of ODEs can be analyzed and their behaviour quantitatively evaluated. In doing so, we demonstrate the power and scope of our differential geometry framework, we provide new tools for analyzing MDO systems and their behaviour, and we suggest hitherto neglected optimization methods which may prove particularly useful within the MDO context. Copyright © 2013 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we address the problem of the separation and recovery of convolutively mixed autoregressive processes in a Bayesian framework. Solving this problem requires the ability to solve integration and/or optimization problems of complicated posterior distributions. We thus propose efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) methods. We present three algorithms. The first one is a classical Gibbs sampler that generates samples from the posterior distribution. The two other algorithms are stochastic optimization algorithms that allow to optimize either the marginal distribution of the sources, or the marginal distribution of the parameters of the sources and mixing filters, conditional upon the observation. Simulations are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a model for early vision tasks such as denoising, super-resolution, deblurring, and demosaicing. The model provides a resolution-independent representation of discrete images which admits a truly rotationally invariant prior. The model generalizes several existing approaches: variational methods, finite element methods, and discrete random fields. The primary contribution is a novel energy functional which has not previously been written down, which combines the discrete measurements from pixels with a continuous-domain world viewed through continous-domain point-spread functions. The value of the functional is that simple priors (such as total variation and generalizations) on the continous-domain world become realistic priors on the sampled images. We show that despite its apparent complexity, optimization of this model depends on just a few computational primitives, which although tedious to derive, can now be reused in many domains. We define a set of optimization algorithms which greatly overcome the apparent complexity of this model, and make possible its practical application. New experimental results include infinite-resolution upsampling, and a method for obtaining subpixel superpixels. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system: a Rijke tube containing a hot wire. We calculate how the growth rate and frequency of small oscillations about a base state are affected either by a generic passive control element in the system (the structural sensitivity analysis) or by a generic change to its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity by calculating the effect of a second hot wire with a small heat-release parameter. In a single calculation, this shows how the second hot wire changes the growth rate and frequency of the small oscillations, as a function of its position in the tube. We then examine the components of the structural sensitivity in order to determine the passive control mechanism that has the strongest influence on the growth rate. We find that a force applied to the acoustic momentum equation in the opposite direction to the instantaneous velocity is the most stabilizing feedback mechanism. We also find that its effect is maximized when it is placed at the downstream end of the tube. This feedback mechanism could be supplied, for example, by an adiabatic mesh. We illustrate the base-state sensitivity by calculating the effects of small variations in the damping factor, the heat-release time-delay coefficient, the heat-release parameter, and the hot-wire location. The successful application of sensitivity analysis to thermo-acoustics opens up new possibilities for the passive control of thermo-acoustic oscillations by providing gradient information that can be combined with constrained optimization algorithms in order to reduce linear growth rates. © Cambridge University Press 2013.