158 resultados para Chemical modifications


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functionalized graphene is a versatile material that has well-known physical and chemical properties depending on functional groups and their coverage. However, selective control of functional groups on the nanoscale is hardly achievable by conventional methods utilizing chemical modifications. We demonstrate electrical control of nanoscale functionalization of graphene with the desired chemical coverage of a selective functional group by atomic force microscopy (AFM) lithography and their full recovery through moderate thermal treatments. Surprisingly, our controlled coverage of functional groups can reach 94.9% for oxygen and 49.0% for hydrogen, respectively, well beyond those achieved by conventional methods. This coverage is almost at the theoretical maximum, which is verified through scanning photoelectron microscope measurements as well as first-principles calculations. We believe that the present method is now ready to realize 'chemical pencil drawing' of atomically defined circuit devices on top of a monolayer of graphene. © 2014 Nature Publishing Group All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. (c) 2007 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes were grown at temperatures as low as 120degreesC by plasma-enhanced chemical vapor deposition. A systematic study of the temperature dependence of the growth rate and the structure of the as-grown nanotubes is presented using a C2H2/NH3 system and nickel as the catalyst. The activation energy for the growth rate was found to be 0.23 eV, much less than for thermal chemical vapor deposition (1.2-1.5 eV). This suggests growth occurs by surface diffusion of carbon on nickel. The result could allow direct growth of nanotubes onto low-temperature substrates like plastics, and facilitate the integration in sensitive nanoelectronic devices. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a detailed study of surface-bound chemical vapor deposition of carbon nanotubes and nanofibers from evaporated transition metal catalysts exposed to ammonia diluted acetylene. We show that a reduction of the Fe/Co catalyst film thickness below 3 nm results into a transition from large diameter (> 40 nm), bamboo-like nanofibers to small diameter (similar to 5 nm) multi-walled carbon nanotubes. The nanostructuring of ultrathin catalyst films critically depends on the gas atmosphere, with the resulting island distribution initiating the carbon nucleation. Compared to purely thermal chemical vapor deposition, we find that, for small diameter nanotube growth, DC plasma assistance is detrimental to graphitization and sample homogeneity and cannot prevent an early catalyst poisoning. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers plasma-enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) and silicon oxide (SiOx) as gate dielectrics for organic thin-film transistors (OTFTs), with solution-processed poly[5, 5′ -bis(3-dodecyl-2-thienyl)-2, 2′ -bithiophene] (PQT-12) as the active semiconductor layer. We examine transistors with SiNx films of varying composition deposited at 300 °C as well as 150 °C for plastic compatibility. The transistors show over 100% (two times) improvement in field-effect mobility as the silicon content in SiNx increases, with mobility (μFE) up to 0.14 cm2 /V s and on/off current ratio (ION / IOFF) of 108. With PECVD SiOx gate dielectric, preliminary devices exhibit a μFE of 0.4 cm2 /V s and ION / IOFF of 108. PQT-12 OTFTs with PECVD SiNx and SiOx gate dielectrics on flexible plastic substrates are also presented. These results demonstrate the viability of using PECVD SiN x and SiOx as gate dielectrics for OTFT circuit integration, where the low temperature and large area deposition capabilities of PECVD films are highly amenable to integration of OTFT circuits targeted for flexible and lightweight applications. © 2008 American Institute of Physics.