157 resultados para Chemical inhibitors
Resumo:
Among the variety of applications for biosensors one of the exciting frontiers is to utilize those devices as post-synaptic sensing elements in chemical coupling between neurons and solid-state systems. The first necessary step to attain this challenge is to realize highly efficient detector for neurotransmitter acetylcholine (ACh). Herein, we demonstrate that the combination of floating gate configuration of ion-sensitive field effect transistor (ISFET) together with diluted covalent anchoring of enzyme acetylcholinesterase (AChE) onto device sensing area reveals a remarkable improvement of a four orders of magnitude in dose response to ACh. This high range sensitivity in addition to the benefits of peculiar microelectronic design show, that the presented hybrid provides a competent platform for assembly of artificial chemical synapse junction. Furthermore, our system exhibits clear response to eserine, a competitive inhibitor of AChE, and therefore it can be implemented as an effective sensor of pharmacological reagents, organophosphates, and nerve gases as well. © 2007 Materials Research Society.
Resumo:
Vertically aligned carbon nanotubes were grown at temperatures as low as 120degreesC by plasma-enhanced chemical vapor deposition. A systematic study of the temperature dependence of the growth rate and the structure of the as-grown nanotubes is presented using a C2H2/NH3 system and nickel as the catalyst. The activation energy for the growth rate was found to be 0.23 eV, much less than for thermal chemical vapor deposition (1.2-1.5 eV). This suggests growth occurs by surface diffusion of carbon on nickel. The result could allow direct growth of nanotubes onto low-temperature substrates like plastics, and facilitate the integration in sensitive nanoelectronic devices. (C) 2003 American Institute of Physics.
Resumo:
We report a detailed study of surface-bound chemical vapor deposition of carbon nanotubes and nanofibers from evaporated transition metal catalysts exposed to ammonia diluted acetylene. We show that a reduction of the Fe/Co catalyst film thickness below 3 nm results into a transition from large diameter (> 40 nm), bamboo-like nanofibers to small diameter (similar to 5 nm) multi-walled carbon nanotubes. The nanostructuring of ultrathin catalyst films critically depends on the gas atmosphere, with the resulting island distribution initiating the carbon nucleation. Compared to purely thermal chemical vapor deposition, we find that, for small diameter nanotube growth, DC plasma assistance is detrimental to graphitization and sample homogeneity and cannot prevent an early catalyst poisoning. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.
Resumo:
This paper considers plasma-enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) and silicon oxide (SiOx) as gate dielectrics for organic thin-film transistors (OTFTs), with solution-processed poly[5, 5′ -bis(3-dodecyl-2-thienyl)-2, 2′ -bithiophene] (PQT-12) as the active semiconductor layer. We examine transistors with SiNx films of varying composition deposited at 300 °C as well as 150 °C for plastic compatibility. The transistors show over 100% (two times) improvement in field-effect mobility as the silicon content in SiNx increases, with mobility (μFE) up to 0.14 cm2 /V s and on/off current ratio (ION / IOFF) of 108. With PECVD SiOx gate dielectric, preliminary devices exhibit a μFE of 0.4 cm2 /V s and ION / IOFF of 108. PQT-12 OTFTs with PECVD SiNx and SiOx gate dielectrics on flexible plastic substrates are also presented. These results demonstrate the viability of using PECVD SiN x and SiOx as gate dielectrics for OTFT circuit integration, where the low temperature and large area deposition capabilities of PECVD films are highly amenable to integration of OTFT circuits targeted for flexible and lightweight applications. © 2008 American Institute of Physics.