55 resultados para CLASTIC INPUTS
Holographic implementation of optical multiple-inputs, multple-outputs (mimo) over a multimode fibre
Resumo:
This paper describes an efficient vision-based global topological localization approach that uses a coarse-to-fine strategy. Orientation Adjacency Coherence Histogram (OACH), a novel image feature, is proposed to improve the coarse localization. The coarse localization results are taken as inputs for the fine localization which is carried out by matching Harris-Laplace interest points characterized by the SIFT descriptor. Computation of OACHs and interest points is efficient due to the fact that these features are computed in an integrated process. We have implemented and tested the localization system in real environments. The experimental results demonstrate that our approach is efficient and reliable in both indoor and outdoor environments. © 2006 IEEE.
Resumo:
The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the computations performed on its afferent inputs. However, the spikes of such a neuron are a very low-dimensional and discrete projection of this continually evolving signal. We explored the possibility that the neuron's efferent synapses perform the critical computational step of estimating the membrane potential trajectory from the spikes. We found that short-term changes in synaptic efficacy can be interpreted as implementing an optimal estimator of this trajectory. Short-term depression arose when presynaptic spiking was sufficiently intense as to reduce the uncertainty associated with the estimate; short-term facilitation reflected structural features of the statistics of the presynaptic neuron such as up and down states. Our analysis provides a unifying account of a powerful, but puzzling, form of plasticity.
Resumo:
Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.
Resumo:
We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.
Resumo:
Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.
Resumo:
In this paper, a novel approach to Petri net modeling of programmable logic controller (PLC) programs is presented. The modeling approach is a simple extension of elementary net systems, and a graphical design tool that supports the use of this modeling approach is provided. A key characteristic of the model is that the binary sensory inputs and binary actuation outputs of the PLC are explicitly represented. This leads to the following two improvements: outputs are unambiguous, and interaction patterns are more clearly represented in the graphical form. The use of this modeling approach produces programs that are simple, lightweight, and portable. The approach is demonstrated by applying it to the development of a control module for a MonTech Positioning Station. © 2008 IEEE.
Resumo:
In this paper we present a new, compact derivation of state-space formulae for the so-called discretisation-based solution of the H∞ sampled-data control problem. Our approach is based on the established technique of continuous time-lifting, which is used to isometrically map the continuous-time, linear, periodically time-varying, sampled-data problem to a discretetime, linear, time-invariant problem. State-space formulae are derived for the equivalent, discrete-time problem by solving a set of two-point, boundary-value problems. The formulae accommodate a direct feed-through term from the disturbance inputs to the controlled outputs of the original plant and are simple, requiring the computation of only a single matrix exponential. It is also shown that the resultant formulae can be easily re-structured to give a numerically robust algorithm for computing the state-space matrices. © 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
The architecture of model predictive control (MPC), with its explicit internal model and constrained optimization is presented. Since MPC relies on an explicit internal model, one can imagine dealing with failures by updating the internal model, and letting the on-line optimizer work out how to control the system in its new condition. This aspects rely on assumptions such that the nature of the fault can be located, and the model can be updated automatically. A standard form of MPC, with linear inequality constraints on inputs and outputs, linear internal model, and quadriatic cost function.