138 resultados para Building laws
Resumo:
Predicting damage to masonry structures due to tunnelling-induced ground movements remains a challenge for practising design engineers. Useful simplified procedures exist, but more detailed analysis has the potential to improve these procedures. This paper considers the use of finite element modelling, including non-linear constitutive laws for the soil and the structure, to simulate damage to a simple masonry structure subjected to tunnelling in sand. The numerical model is validated through comparison with the results of a series of centrifuge tests and used to perform a sensitivity study on the effect of building weight and masonry damage on the structural response. Results show a direct correlation between the weight of the structure, normalised to the relative stiffness between the structure and the soil, and the modification of the settlement profile. By including a cracking model for the masonry, the reduction in structural stiffness caused by progressive masonry damage is also proven to affect the building deflection.
Resumo:
A new liquid crystal device structure has been developed using a vertically grown Multi-Wall Carbon NanoTube (MWCNT) as a 3D electrode structure, which allows complicated phase only hologram to be displayed using conventional liquid crystal materials. The nanotubes act as an individual electrode sites that generate an electric field profile, dictating the refractive index profile with the liquid crystal cell. Changing the electric field applied makes it possible to tune the properties to modulate the light in an ideal kinoform. A perfect 3D image can be generated by a computer generated hologram by using the diffraction of the light from the hologram pixels to create an optical wave front that appears to come from 3D object. A multilevel phase modulating device based on nematic LC's is also under progress, which will be used with the LC/CNT devices on an LCOS backplane to project a full 3D image from the kinoform.