28 resultados para Adaptive object model
Resumo:
This paper aims to solve the fault tolerant control problem of a wind turbine benchmark. A hierarchical controller with model predictive pre-compensators, a global model predictive controller and a supervisory controller is proposed. In the model predictive pre-compensator, an extended Kalman Filter is designed to estimate the system states and various fault parameters. Based on the estimation, a group of model predictive controllers are designed to compensate the fault effects for each component of the wind turbine. The global MPC is used to schedule the operation of the components and exploit potential system-level redundancies. Extensive simulations of various fault conditions show that the proposed controller has small transients when faults occur and uses smoother and smaller generator torque and pitch angle inputs than the default controller. This paper shows that MPC can be a good candidate for fault tolerant controllers, especially the one with an adaptive internal model combined with a parameter estimation and update mechanism, such as an extended Kalman Filter. © 2012 IFAC.
Resumo:
This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.
Resumo:
The paper develops the basis for a self-consistent, operationally useful, reactive pollutant dispersion model, for application in urban environments. The model addresses the multi-scale nature of the physical and chemical processes and the interaction between the different scales. The methodology builds on existing techniques of source apportionment in pollutant dispersion and on reduction techniques of detailed chemical mechanisms. © 2005 Published by Elsevier Ltd.
Resumo:
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.
Resumo:
Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
Resumo:
This paper describes results obtained using the modified Kanerva model to perform word recognition in continuous speech after being trained on the multi-speaker Alvey 'Hotel' speech corpus. Theoretical discoveries have recently enabled us to increase the speed of execution of part of the model by two orders of magnitude over that previously reported by Prager & Fallside. The memory required for the operation of the model has been similarly reduced. The recognition accuracy reaches 95% without syntactic constraints when tested on different data from seven trained speakers. Real time simulation of a model with 9,734 active units is now possible in both training and recognition modes using the Alvey PARSIFAL transputer array. The modified Kanerva model is a static network consisting of a fixed nonlinear mapping (location matching) followed by a single layer of conventional adaptive links. A section of preprocessed speech is transformed by the non-linear mapping to a high dimensional representation. From this intermediate representation a simple linear mapping is able to perform complex pattern discrimination to form the output, indicating the nature of the speech features present in the input window.
Resumo:
The majority of computational studies of confined explosion hazards apply simple and inaccurate combustion models, requiring ad hoc corrections to obtain realistic flame shapes and often predicting an order of magnitude error in the overpressures. This work describes the application of a laminar flamelet model to a series of two-dimensional test cases. The model is computationally efficient applying an algebraic expression to calculate the flame surface area, an empirical correlation for the laminar flame speed and a novel unstructured, solution adaptive numerical grid system which allows important features of the solution to be resolved close to the flame. Accurate flame shapes are predicted, the correct burning rate is predicted near the walls, and an improvement in the predicted overpressures is obtained. However, in these fully turbulent calculations the overpressures are still too high and the flame arrival times too low, indicating the need for a model for the early laminar burning phase. Due to the computational expense, it is unrealistic to model a laminar flame in the complex geometries involved and therefore a pragmatic approach is employed which constrains the flame to propagate at the laminar flame speed. Transition to turbulent burning occurs at a specified turbulent Reynolds number. With the laminar phase model included, the predicted flame arrival times increase significantly, but are still too low. However, this has no significant effect on the overpressures, which are predicted accurately for a baffled channel test case where rapid transition occurs once the flame reaches the first pair of baffles. In a channel with obstacles on the centreline, transition is more gradual and the accuracy of the predicted overpressures is reduced. However, although the accuracy is still less than desirable in some cases, it is much better than the order of magnitude error previously expected.
Resumo:
The software package Dymola, which implements the new, vendor-independent standard modelling language Modelica, exemplifies the emerging generation of object-oriented modelling and simulation tools. This paper shows how, in addition to its simulation capabilities, it may be used as an embodiment design tool, to size automatically a design assembled from a library of generic parametric components. The example used is a miniature model aircraft diesel engine. To this end, the component classes contain extra algebraic equations calculating the overload factor (or its reciprocal, the safety factor) for all the different modes of failure, such as buckling or tensile yield. Thus the simulation results contain the maximum overload or minimum safety factor for each failure mode along with the critical instant and the device state at which it occurs. The Dymola "Initial Conditions Calculation" function, controlled by a simple software script, may then be used to perform automatic component sizing. Each component is minimised in mass, subject to a chosen safety factor against failure, over a given operating cycle. Whilst the example is in the realm of mechanical design, it must be emphasised that the approach is equally applicable to the electrical or mechatronic domains, indeed to any design problem requiring numerical constraint satisfaction.