220 resultados para ADAPTIVE RECOVERY CLOCK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern technology has allowed real-time data collection in a variety of domains, ranging from environmental monitoring to healthcare. Consequently, there is a growing need for algorithms capable of performing inferential tasks in an online manner, continuously revising their estimates to reflect the current status of the underlying process. In particular, we are interested in constructing online and temporally adaptive classifiers capable of handling the possibly drifting decision boundaries arising in streaming environments. We first make a quadratic approximation to the log-likelihood that yields a recursive algorithm for fitting logistic regression online. We then suggest a novel way of equipping this framework with self-tuning forgetting factors. The resulting scheme is capable of tracking changes in the underlying probability distribution, adapting the decision boundary appropriately and hence maintaining high classification accuracy in dynamic or unstable environments. We demonstrate the scheme's effectiveness in both real and simulated streaming environments. © Springer-Verlag 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address the problem of the separation and recovery of convolutively mixed autoregressive processes in a Bayesian framework. Solving this problem requires the ability to solve integration and/or optimization problems of complicated posterior distributions. We thus propose efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) methods. We present three algorithms. The first one is a classical Gibbs sampler that generates samples from the posterior distribution. The two other algorithms are stochastic optimization algorithms that allow to optimize either the marginal distribution of the sources, or the marginal distribution of the parameters of the sources and mixing filters, conditional upon the observation. Simulations are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a vision based mobile robot localization strategy. Local scale-invariant features are used as natural landmarks in unstructured and unmodified environment. The local characteristics of the features we use prove to be robust to occlusion and outliers. In addition, the invariance of the features to viewpoint change makes them suitable landmarks for mobile robot localization. Scale-invariant features detected in the first exploration are indexed into a location database. Indexing and voting allow efficient recognition of global localization. The localization result is verified by epipolar geometry between the representative view in database and the view to be localized, thus the probability of false localization will be decreased. The localization system can recover the pose of the camera mounted on the robot by essential matrix decomposition. Then the position of the robot can be computed easily. Both calibrated and un-calibrated cases are discussed and relative position estimation based on calibrated camera turns out to be the better choice. Experimental results show that our approach is effective and reliable in the case of illumination changes, similarity transformations and extraneous features. © 2004 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day-night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucrose in the dark. These data suggest that there is a feedback between the molecular components that comprise the circadian oscillator and plant metabolism, with the circadian clock both regulating and being regulated by metabolism. We used also simulations within a three-loop mathematical model of the Arabidopsis circadian oscillator to identify components of the circadian clock sensitive to sucrose. The mathematical studies identified GIGANTEA (GI) as being associated with sucrose sensing. Experimental validation of this prediction demonstrated that GI is required for the full response of the circadian clock to sucrose. We demonstrate that GI acts as part of the sucrose-signaling network and propose this role permits metabolic input into circadian timing in Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: