35 resultados para 7140-316
Resumo:
A cross-sectional transmission electron microscope study of the low density layers at the surface and at the substrate-film interface of tetrahedral amorphous carbon (ta-C) films grown on (001) silicon substrates is presented. Spatially resolved electron energy loss spectroscopy is used to determine the bonding and composition of a tetrahedral amorphous carbon film with nanometre spatial resolution. For a ta-C film grown with a substrate bias of -300 V, an interfacial region approximately 5 nm wide is present in which the carbon is sp2 bonded and is mixed with silicon and oxygen from the substrate. An sp2 bonded layer observed at the surface of the film is 1.3 ± 0.3 nm thick and contains no detectable impurities. It is argued that the sp2 bonded surface layer is intrinsic to the growth process, but that the sp2 bonding in the interfacial layer at the substrate may be related to the presence of oxygen from the substrate.
Resumo:
Thinning of heat-exchanger tubes by erosion-corrosion has been a problem in fluidized bed combustors (FBCs), particularly at lower metal temperatures where thicker, mechanically protective oxide scales are unable to form. Many laboratory-scale tests have shown a decrease in material loss at higher temperatures, in a similar manner to FBC boilers, but also show a decrease in wastage at low temperatures (e.g. 200°C) which has not been detected in boilers. It has been suggested that this difference is due to laboratory tests being carried out isothermally whereas in a FBC boiler the fluidized bed is considerably hotter than the metal heat exchanger tubing. In this laboratory study the simulation was therefore improved by internally cooling one of the two low carbon steel specimens. These were rotated in a horizontal plane within a lightly fluidized bed with relative particle velocities of 1.3-2.5 m s-1. Tests were carried out over a range of bed temperatures (200-500°C) and cooled specimen surface temperatures (115-500°C), with a maximum temperature difference between the two of 320°C. Although specimens exposed isothermally still showed maximum wastage at intermediate temperatures (about 350°C), those which were cooled showed high levels of wastage at temperatures as low as 200°C in a similar manner to FBC boilers. Cooling may modify the isothermal erosion-corrosion curve, causing it to broaden and the maximum wastage rate to shift to lower temperatures. © 1995.