16 resultados para 671001 Structural metal products


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have grown epitaxially orientation-controlled monoclinic VO2 nanowires without employing catalysts by a vapor-phase transport process. Electron microscopy results reveal that single crystalline VO2 nanowires having a [100] growth direction grow laterally on the basal c plane and out of the basal r and a planes of sapphire, exhibiting triangular and rectangular cross sections, respectively. In addition, we have directly observed the structural phase transition of single crystalline VO2 nanowires between the monoclinic and tetragonal phases which exhibit insulating and metallic properties, respectively, and clearly analyzed their corresponding relationships using in situ transmission electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis of multiwalled carbon nanotubes (MWCNTs) encapsulated with Co/Pd magnetic and nonmagnetic multi-metal nanowires using Co and Pd thin-layers deposited on Si substrate by microwave plasma enhanced chemical vapor deposition using a bias-enhanced growth method. Detailed structural and compositional investigations of these metal nanowires inside MWCNTs were carried out by scanning electron microscopy and transmission electron microscopy to elucidate the growth mechanisms. Energy dispersive X-ray spectroscopy revealed that MWCNTs were encapsulated with Co and Pd nanowires, separately, at the tube top and the bottom of Co nanowire, respectively. The face-centered-cubic (fcc) structure of Co nanowires was confirmed by a selected area diffraction pattern. We proposed a fruitful description for the encapsulating mechanisms of both Co and Pd multi-metal nanowires. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal production consumes around 10% of all global energy, so is a significant driver of climate change and other concerns about sustainability. Demand for metal is rising and forecast to double by 2050 through a combination of growing total demand from developing countries, and ongoing replacement demand in developed economies. Metal production is already extremely efficient, so the major opportunities for emissions abatement in the sector are likely to arise from material efficiency - using less new metal to meet demand for services. Therefore this paper examines the opportunity to reduce requirements for steel and aluminium by lightweight design. A set of general principles for lightweight design are proposed by way of a simple analytical example, and are then applied to five case study products which cumulatively account for 30% of global steel product output. It is shown that exploiting lightweight design opportunities for these five products alone could reduce global steel requirements by 5%, and similar savings in aluminium products could reduce global aluminium requirements by 7%. If similar savings to those in the design case studies were possible in all steel and aluminium products, total material requirements could be reduced by 25-30%. However, many of these light-weighting measures are, at present, economically unattractive, and may take many years to implement. © 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive Radio Frequency Identification (RFID) has revolutionized the way in which products are identified. This paper considers the effect of metals on the performance of RFID at ultra high frequency (UHF). The paper establishes read patterns in space, highlighting the interference of RF waves due to three different metals, one ferrous and the other two non ferrous, when placed behind a transponder. The effect of thickness of the metal plate is also examined. Different metals have been found to have different interference effects although there are some similarities in their read patterns related to their material properties. Also experiments have been carried out to identify and establish various methods of improving this performance. Finally, differences between performance-measuring parameters, namely attenuating transmitted power and calculating read rate at a fixed attenuation are established and possible reasons of these observations are presented. © 2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ever increasing demands on functional integration of high strength light weight products leads to the development of a new class of manufacturing processes. The application of bulk forming processes to sheet or plate semi-finished products, sometimes in combination with conventional sheet forming processes creates new products with the requested properties. The paper defines this new class of sheet-bulk metal forming processes, gives an overview of the existing processes belonging to this class, highlights the tooling aspects as well as the resulting product properties and presents a short summary of the relevant work that has been done towards modeling and simulation. © 2012 CIRP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal foams fabricated via sintering offer novel mechanical and acoustic properties. Previously, polymer foams have been used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost-effective means for the mass-production of open-cell metal foams. The static flow resistance of sintered metal foams was characterized for a range of practical pore sizes and porosities. The measured values for the flow resistance were subsequently used in a phenomenological acoustic model to predict the impedances and propagation constants of the foams. The predictions were then compared to acoustic measurements. At low frequencies (0-1000Hz), the phenomenological model captures the magnitude and frequency dependence of the absorption. At higher frequencies, as expected, the phenomenological model underpredicted the acoustic properties of the foams. However, an alternative microstructural model demonstrated good correlation to the measured results in this frequency range. The effects of foam type and arrangement on the absorption pattern were examined. General trends were identified for enhancing the low frequency performance of an acoustic absorber incorporating sintered foams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing product life allows the embodied emissions in products to be spread across a longer period but can mean that opportunities to improve use-phase efficiency are foregone. In this paper, a model that evaluates this trade-off is presented and used to estimate the optimal product life for a range of metal-intensive products. Two strategies that have potential to save emissions are explored: (1) adding extra embodied emissions to make products more sturdy, increasing product life, and (2) increasing frequency of use, causing early product failure to take advantage of improvements in use-phase efficiency. These strategies are evaluated for two specific case studies (long-life washing machines and more frequent use of vehicles through car clubs) and for a range of embodied and use-phase intensive products under different use-phase improvement rate assumptions. Particular emphasis is placed on the fact that products often fail neither at their design life nor at their optimal life. Policy recommendations are then made regarding the targeting of these strategies according to product characteristics and the timing of typical product failure relative to optimal product life.