16 resultados para 314.12
Resumo:
This work demonstrates transmission at 2.5 Gbit/s across two wavelength-division multiplexing (WDM) network nodes, constructed using counter-propagating semiconductor optical amplifier (SOA) wavelength converters and an integrated wavelength-selective router separated by 45 km of fiber, with an overall penalty of 0.6 dB. Minimal degradation of the eye diagram is evident across the whole system. Full utilization of the capacity of the router would allow an aggregate 360-Gbit/s node capacity for a WDM channel of 2.5 Gb/s.
Resumo:
A parametric set of velocity distributions has been investigated using a flat plate experiment. Three different diffusion factors and peak velocity locations were tested. These were designed to mimic the suction surfaces of Low Pressure (LP) turbine blades. Unsteady wakes, inherent in real turbomachinery flows, were generated using a moving bar mechanism. A turbulence grid generated a freestream turbulence level that is believed to be typical of LP turbines. Measurements were taken across a Reynolds number range of 50,000-220,000 at three reduced frequencies (0.314, 0.628, 0.942). Boundary layer traverses were performed at the nominal trailing edge using a Laser Doppler Anemometry system and hot-films were used to examine the boundary layer behaviour along the surface. For every velocity distribution tested, the boundary layer separated in the diffusing flow downstream of the peak velocity. The loss production is dominated by the mixing in the reattachment process, mixing in the turbulent boundary layer downstream of reattachment and the effects of the unsteady interaction between the wakes and the boundary layer. A sensitive balance governs the optimal location of peak velocity on the surface. Moving the velocity peak forwards on the blade was found to be increasingly beneficial when bubblegenerated losses are high, i.e. at low Reynolds number, at low reduced frequency and at high levels of diffusion. Copyright © 2008 by ASME.