7 resultados para Doeça de planta

em Biblioteca Digital de la Universidad Católica Argentina


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Se planificaron las experiencias con el objeto de analizar el comportamiento del catalizador en la columna metálica de mayor diámetro. Se modificaron las masas usadas para verificar la eficiencia de retención respecto de la masa. Se realizaron ciclos de adsorción, desorción y readsorción sobre una misma muestra para determinar variaciones en la eficiencia del catalizador. En otra fase, en colaboración con el Dr. V. A. Ranea y el Dr. E. E. Mola (INIFTA, UNLP), se desarrolló el estudio teórico de la adsorción de moléculas de SO2, CH4, CO2, O2 y CO sobre Cr2O3(0001) mediante Teoría del Funcional Densidad (programa VASP, Vienna Ab-initio Simulation Package), y el estudio de la cinética de la reacción entre CH4, SO2 y el O2 junto con la presencia de especies sulfito y sulfato. Este estudio permitió hallar los sitios preferenciales de adsorción de S0 y la posible competencia con SO2 experimentalmente y por cálculos teóricos. Experimentalmente, se observa que la eficiencia de adsorción del catalizador respecto al SO2 es cercana al 100%. Se observa un pico de termodesorción a 1120 K. Luego, se estudió la oxidación de CH4 con SO2. Se observa que hay producción de CO2 desde temperatura inicial, seguida de un aumento significativo en la formación de CO2 hasta 330-340 K. Luego, la producción de CO2 se mantiene aproximadamente constante. Mediante el empleo de la ecuación de Arrhenius y resultados experimentales, se obtuvo la energía de activación de la reacción global, de 7 Kcal/mol. Mediante estudios teóricos, se determinó que la energía de quimisorción del SO2 sobre el Cr2O3 es de -3.09 eV para la configuración más estable, una energía de adsorción de O2 en estado disociativo de -1.567 eV, una energía para CH4 sobre O2 adsorbido previamente de -0.335 eV, y -0.812 eV para la configuración más estable de CO2 sobre el sustrato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Se realizaron las experiencias planificadas con el objeto de analizar el comportamiento del catalizador en la columna metálica, para simular condiciones de planta piloto. Se modificaron las masas de catalizador y se realizaron ciclos de adsorción, desorción y readsorción sucesivos sobre una misma muestra, con lo que se determinaron variaciones en la eficiencia del mismo. En otra fase se desarrolló el estudio teórico de la adsorción de O2 y CO2 sobre el mismo sustrato, y el estudio de la cinética de la reacción entre CH4, SO2 y el O2 por medio del programa VASP (Vienna Ab-initio Simulation Package). Se verificó, a través de los datos experimentales y teóricos y en colaboración con el Dr. V. A. Ranea y el Prof. E. E. Mola (INIFTA, UNLP), la presencia de especies sulfito y sulfato sobre la superficie del soporte. Experimentalmente, se observa que la eficiencia de adsorción del catalizador respecto al SO2 es cercana al 100%. Se observa un pico de termodesorción a 1120 K. Luego, se estudió la oxidación de CH4 con SO2. Se observa que hay producción de CO2 desde temperatura inicial, seguida de un aumento en la formación de CO2 hasta 330-340 K. Luego, la producción de CO2 se mantiene aproximadamente constante. Mediante el empleo de la ecuación de Arrhenius y resultados experimentales, se obtuvo la energía de activación de la reacción global, de 7 Kcal/mol. También se observó que el incremento del flujo de SO2 a valores superiores a 200 ml/min no incrementa la cantidad de SO2 retenida en el rango de 923-1023K. Para un incremento de masa de sustrato catalítico de 0,025 a 0,050 g, la masa retenida de SO2 se incrementa un 70,61%. Mediante estudios teóricos, se determinó que la energía de quimisorción del SO2 sobre el Cr2O3 es de -3.09 eV para la configuración más estable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Se propone utilizar un óxido como el Cr2O3 como catalizador ya que se ha determinado anteriormente, en la primera etapa de esta investigación, (“Estudio comparativo de la retención de SO2 sobre óxidos de metales de transición soportados en alúmina”), que la retención de SO2 sobre su superficie es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos y un proceso de óxido reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO2 adsorbido es función de la temperatura. La mayor eficiencia del Cr2O3 puede explicarse en base a sus propiedades superficiales, lo cual ha sido utilizado en la segunda etapa de reacción de reducción, ya que se ha completado la etapa inicial de quimisorción. En la segunda etapa de esta investigación (“Estudio de la reacción de reducción de SO2 con CH4 a altas temperaturas sobre catalizador de Cr2O3 soportado en alúmina”), se apuntó al estudio de un nuevo tipo de sinergia entre propiedades ácido-base y propiedades redox en una misma superficie. La tercera etapa apuntó a determinar la influencia que tiene el O2 en este proceso, ya que el O2 se encuentra presente en las chimeneas industriales en las condiciones de reacción entre el SO2 y el CH4, y produce modificaciones en los parámetros de reacción. Se experimentó con diferentes masas de catalizador y flujos de los distintos gases, y se estudió la influencia de la presencia de oxígeno en la reacción y particularmente con diferentes flujos del mismo, y la posibilidad de regeneración del catalizador.En esta cuarta y última etapa se están estudiando los cambios que se producen en la reacción al pasar de escala laboratorio a planta piloto utilizando una columna de mayor diámetro construída en metal. A través de los datos experimentales se está estudiando, en conjunto con el INIFTA, la presencia de especies sulfito y sulfato sobre la superficie del soporte. Adicionalmente, por medio del programa VASP (Vienna Ab-initio Simulation Package), se analiza la interacción entre los reactivos gaseosos y el soporte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Se planificaron las experiencias con el objeto de analizar el comportamiento del catalizador en la columna metálica de mayor diámetro. Se modificaron las masas usadas para verificar la eficiencia de retención respecto de la masa. Se realizaron ciclos de adsorción, desorción y readsorción sobre una misma muestra para determinar variaciones en la eficiencia del catalizador. En otra fase, en colaboración con el Dr. V. A. Ranea y el Prof. E. E. Mola (INIFTA, UNLP), se desarrolló el estudio teórico de la adsorción de moléculas de SO2, CH4, CO2, O2 y CO sobre Cr2O3(0001) mediante Teoría del Funcional Densidad (programa VASP, Vienna Ab-initio Simulation Package), y el estudio de la cinética de la reacción entre CH4, SO2 y el O2 junto con la presencia de especies sulfito y sulfato. Este estudio permitió hallar los sitios preferenciales de adsorción de Sº y la posible competencia con SO2 experimentalmente y por cálculos teóricos. Dentro del marco de la presente línea de investigación, la Ing. Sabrina Hernández Guiance continúa realizando experiencias en el marco del proyecto conjunto con el INIFTA, las cuales forman parte del desarrollo de su tesis doctoral. Experimentalmente, se observa que la eficiencia de adsorción del catalizador respecto al SO2 es cercana al 100%. Se observa un pico de termodesorción a 1120 K. Luego, se estudió la oxidación de CH4 con SO2. Se observa que hay producción de CO2 desde temperatura inicial, seguida de un aumento significativo en la formación de CO2 hasta 330-340 K. Luego, la producción de CO2 se mantiene aproximadamente constante. Mediante el empleo de la ecuación de Arrhenius y resultados experimentales, se obtuvo la energía de activación de la reacción global, de 7 Kcal/mol. Mediante estudios teóricos, se determinó que la energía de quimisorción del SO2 sobre el Cr2O3 es de -3.09 eV para la configuración más estable, una energía de adsorción de O2 en estado disociativo de -1.567 eV, una energía para CH4 sobre O2 adsorbido previamente de -0.335 eV, y - 0.812 eV para la configuración más estable de CO2 sobre el sustrato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen: Lo que se pretende reflejar en este trabajo es la importancia del uso de fosfitos y micronutrientes en el cultivo de soja. El cultivo de esta oleaginosa se ha ido incrementando a lo largo de los últimos años de la mano de la siembra directa, de la genética, del paquete tecnológico para su implantación y protección y del manejo realizado por los profesionales del agro. Este crecimiento en superficie en detrimento de los demás cultivos extensivos que deberían formar parte de la rotación, hizo de la oleaginosa en varias zonas un monocultivo. Esto sumado a la falta de rotación de activos fue generando problemas dentro de los cuales podemos citar: malezas de difícil control, alta presión de enfermedades y plagas. La fertilización, en la generalidad de los casos, está por debajo de los requerimientos por tonelada lograda, generando extracción de macro y micro elementos y agotando los niveles de estos mismos en el perfil edáfico. El aporte de macronutrientes está dado principalmente por fósforo (no en todas las zonas). Asimismo, en algunas zonas dependiendo las deficiencias agregan potasio, azufre y calcio. Así todo se fertiliza por debajo de los rindes objetivos perseguidos, lo cual se comprende que cuando los cultivos superan los mismos, se está haciendo una extracción mayor del sistema suelo que los aportes generados. Lo ideal es realizar un muestreo de cada lote y ambiente, verificar los niveles de nutrientes disponibles y fertilizar pensado en contemplar el rinde perseguido y entregar al sistema suelo un poco más, de manera de hacer una producción no solo rentable en el corto plazo sino sustentable en el tiempo, cuidando el capital suelo. Los macro y meso nutrientes son aportados vía fertilización de base o fondo y la manera más eficiente de aportar los micro elementos, es vía fertilización foliar. Los fosfitos son desde el punto de vista sanitario, la herramienta ideal y complementaria de los fungicidas. Son derivados del ácido fosforoso y tienen dos formas de acción contra los hongos fitopatógenos. Una forma indirecta, aumentando el nivel de defensas de las plantas o Fitoalexinas, impidiendo que las esporas germinen en tejido susceptible. Y una acción directa como fungicidas contra los pseudohongos u Oomicetes. Recordar que los triazoles son una excelente herramienta para controlar hongos verdaderos (Ascomicetes, Basidiomicetes y Deuteromicetes) al igual que las estrobirulinas, pero ambos activos no son específicos para Oomicetes. Generalmente, los fosfitos van combinados con diferentes cationes, que a su vez le confieren diferentes modos de actuar, por ejemplo el fosfito de cobre, actúa desde el punto de vista sanitario elevando las defensas y además presenta el catión cobre como elemento fungistático y bactericida. En el mercado existen diferentes tipos de fosfitos y formas de acción según catión acompañante. Hay fosfitos de Cu, Al, K, Mn, Ca, ect. Uno de los puntos más importantes de los fosfitos es que se translocan vía xilema y floema, llegando rápidamente a los diferentes sitios de la planta. Los fungicidas a diferencia de los fosfitos no pueden realizar la misma labor. Los fungicidas protegen al follaje tratado, pero no al nuevo emergente y el movimiento de los activos se da desde donde impacta la gota asperjada en sentido ascendente, ósea acrópeto, mientras que los fosfitos al recorrer toda la planta realizan una protección integral de la misma. Además, los fosfitos, presentan efecto sinérgico con los fungicidas potenciando la acción de estos. Colaboran en el engrosamiento de tejidos de raíz y tallo, fortaleciéndolos contra el ataque de patógenos. Son de rápida absorción e impactan positivamente en la formación de destinos, como flores y frutos, y fuentes de reservas como raíz. No disponen de valor nutricional para los cultivos extensivos anuales, ya que presentan un tiempo de degradación que excede al desarrollo de estos mismos. Este trabajo, se desarrolla implementando el diseño completamente aleatorio, en el cual la variable respuesta (rendimiento) puede depender de la influencia de un único factor (aplicación de fitoestimulantes), de forma que el resto de las causas de variación se engloban en el error experimental. Se compara los tratamientos contra el testigo, y se hace análisis de la variancia con un nivel de significación del 5%. Dentro de la variable respuesta se analiza el rendimiento en kg/ha. Teniendo en cuenta para este análisis los siguientes datos: 1) Número de granos 2) Peso de 1000 granos Este ensayo consta de cuatro tratamientos y tres repeticiones en un mismo estado fenológico (V10 R2) del cultivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen: Lotus tenuis es una leguminosa perenne, naturalizada en los campos bajos de la Cuenca del Salado. Es una especie alógama y presenta una alta variabilidad genética (Andrés A., and Rosso 2007), que le permite crecer y desarrollarse en distintas condiciones ambientales (Goldberg, E.E. et al 2010). Son pocas las especies de relevancia agrícola capaces de crecer bajo condiciones que combinan inundación y salinidad (Escaray 2007). Se ha demostrado la existencia de poblaciones de L. tenuis con diferentes niveles de tolerancia a distintos niveles de inundación y salinidad (Teakle, N.L. et al 2010; Striker et al. 2012). La tolerancia a la salinidad se define como la habilidad de una planta para crecer y completar su ciclo de vida en un medio que contiene altas concentraciones de sal. Debido a esto surgió mi interés por profundizar en el estudio de esta especie y su posible adaptación a suelos con problemas de salinidad. Se trabajo con dos familias de medios hermanos (FMH) de L. tenuis caracterizadas como tolerantes o susceptibles a salinidad provenientes del programa de mejoramiento genético del INTA Pergamino. Se utilizaron 550 plantas de cada genotipo que fueron sometidas a dos tratamientos salinos. Las plantas se colocaron de a cinco en macetas (20 cm. de diámetro) en invernáculo, se las dividió en: dosis 1 (9 repeticiones), fueron regadas con una solución 75mM de cloruro de sodio (NaCl), dosis 2 (9 repeticiones) regadas con una solución 150 mM NaCl, y un grupo testigo control para cada genotipo (4 repeticiones) regado sin NaCl. El tratamiento salino se aplicó durante 62 días hasta la aparición de la primera flor. Se determinó producción de biomasa de parte aérea (tallos mas hojas). También se determinó porcentaje de materia seca, por secado a 65ºC hasta peso constante de tallo más hojas, corona más raíz, longitud de tallo y raíz, y número de ramificaciones del tallo. Los resultados analizados muestran que la FMH 490 o tolerante posee mayor desarrollo en todas las variables analizadas y en todas las condiciones ensayadas excepto en longitud de raíz y corona. Pero, al sufrir el estrés los porcentajes de reducción en esta FMH que se observan son similares a los porcentajes de reducción observados en la FMH 2241 e incluso, para algunas variables el genotipo susceptible 2241 presentaba menores pérdidas frente al estrés recibido (MS por planta corona y raíz, Biomasa por planta corona y raíz, largo de tallo y Grs de tallo por planta.). El efecto de la salinidad fue igual o similar entre ambas isolíneas, por lo que la que presentaba mayor crecimiento produjo mayor biomasa en condiciones de estrés salino que la de menor crecimiento. La tolerancia al estrés salino fue similar en ambos genotipos, solo que una presentó más desarrollo que la otra. El análisis de las variables estudiadas mostró que en este ensayo el crecimiento de las plantas tiende a disminuir al aumentar la dosis de NaCl y que, a igualdad de dosis, los parámetros de crecimiento evaluados fueron mayores en el genotipo tolerante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Me han pedido que comparta con ustedes unas breves reflexiones sobre la investigación y el investigador, a partir de nuestras experiencias comunes. Vamos a enhebrar, entonces, unas reflexiones sobre lo que hacemos y conocemos, una mirada breve sobre un quehacer común. El diccionario de la lengua nos dice que investigar es “hacer diligencias para descubrir una cosa”. ¿Descubrir? ¿Cómo otro Colón, lanzarse a la procura de nuevos mundos? Parece cosa muy difícil, cosa para muy pocos. Si seguimos interrogando a la palabra, vemos que viene de vocablo latino, in-vestigatio. Y vestigatio nos conduce a vestigium, la planta del pie, el vestigio, la huella. El que investiga, como el célebre Sherlock Holmes, modelo del investigador, busca las huellas. Sigue una huella. Significa que ve lo que todos han visto ya, y dicho ya. Aquí está el desafío del investigador: ver lo que todos han visto y pensar lo que pocos han pensado hasta allí. En lo que todos han visto, debe encontrar lo inadvertido y desenvolver nuevas conclusiones. Volviendo a Sherlock Holmes, recuerden un famoso diálogo en el cuento “Silver Blaze” (Estrella de Plata). Se trata de la investigación sobre la desaparición de un caballo de carrera, cuyo nombre da título al relato, y de la muerte de su entrenador. El inspector de policía a cargo relata cuidadosamente todos los hechos del caso y, al final, pregunta si hay algún otro punto sobre el cual fijar la atención, ya que cree haberlos señalado todos...