17 resultados para transfer RNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IDOKI SCF Technologies S.L. is a technology-based company, set up on September 2006 in Derio (Biscay) with the main scope of developing extraction and purification processes based on the use of supercritical fluid extraction technology (SFE) in food processing, extraction of natural products and the production of personal care products. IDOKI¿s researchers have been working on many different R&D projects so far, most of them using this technology. However, the optimization of a SFE method for the different matrices cannot be performed unless we have an analytical method for the characterisation of the extracts obtained in each experiment. The analytical methods are also essential for the quality control of the raw materials that are going to be used and also for the final product. This PhD thesis was born to tackle this problem and therefore, it is based on the development of different analytical methods for the characterisation of the extracts and products. The projects that we could include in this thesis were the following: the extraction propolis, the recovery of agroindustrial residues (soy and wine) and the dealcoholisation of wine.On the one hand, for the extraction of propolis, several UV-Vis spectroscopic methods were used in order to measure the antioxidant capacity and the total polyphenol and flavonoid content of the extracts. A SFC method was also developed in order to measure more specific phenolic compounds. On the other hand, for the recovery of agroindustrial residues UV-Vis spectroscopy was used to determine the total polyphenol content and two SFC methods were developed to analyse different phenolic compounds. Extraction methods such as MAE, FUSE and rotary agitation were also evaluated for the characterisation of the raw materials.Finally, for the dealcoholisation of wine, the development of a SBSE-TD-GC-MS and DHS-TD-GC-MS methods for the analysis of aromas and a NIR spectroscopic method for the determination of ethanol content with the help of chemometrics was necessary. Most of these methods are typically used in IDOKI¿s lab as routine analyses apart from others not included in this PhD thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Staphyloccocal nuclease domain-containing protein 1 (SND1) is involved in the regulation of gene expression and RNA protection. While numerous studies have established that SND1 protein expression is modulated by cellular stresses associated with tumor growth, hypoxia, inflammation, heat- shock and oxidative conditions, little is known about the factors responsible for SND1 expression. Here, we have approached this question by analyzing the transcriptional response of human SND1 gene to pharmacological endoplasmic reticulum (ER) stress in liver cancer cells. Results: We provide first evidence that SND1 promoter activity is increased in human liver cancer cells upon exposure to thapsigargin or tunicamycin or by ectopic expression of ATF6, a crucial transcription factor in the unfolded protein response triggered by ER stress. Deletion analysis of the 5'-flanking region of SND1 promoter identified maximal activation in fragment (-934, +221), which contains most of the predicted ER stress response elements in proximal promoter. Quantitative real- time PCR revealed a near 3 fold increase in SND1 mRNA expression by either of the stress- inducers; whereas SND1 protein was maximally upregulated (3.4-fold) in cells exposed to tunicamycin, a protein glycosylation inhibitor. Conclusion: Promoter activity of the cell growth- and RNA-protection associated SND1 gene is up-regulated by ER stress in human hepatoma cells.