2 resultados para temperature range
Resumo:
[EN] We carry out quasi-classical trajectory caculations for theC + CH+ → C2+ + H reaction on an ad hoc computed high-level ab initio potential energy surface. Thermal rate coefficients at the temperatures of relevance in cold interstellar clouds are derived and compared with the assumed, temperature-independent estimates publicly available in kinetic databases KIDA and UDfA. For a temperature of 10 K the database value overestimates by a factor of two the one obtained by us (thus improperly enhancing the destruction route of CH+ in astrochemical kinetic models) which is seen to double in the temperature range 5–300 K with a sharp increase in the first 50 K. The computed values are fitted via the popular Arrhenius–Kooij formula and best-fitting parameters α = 1:32 X 10-9 cm3s-1, β = 0:10 and γ = 2:19 K to be included in the online mentioned databases are provided. Further investigation shows that the temperature dependence of the thermal rate coefficient better conforms to the recently proposed so-called ‘deformed Arrhenius’ law by Aquilanti and Mundim.
Resumo:
The structure, thermal stability, morphology and ion conductivity of titanium perovskites with the general formula Li3xLn2/3−xTiO3 (Ln = rare earth element; 3x= 0.30) are studied in the context of their possible use as solid electrolyte materials for lithium ion batteries. Materials are prepared by a glycine-nitrate method using different sintering treatments, with a cation-disorder-induced structural transition from tetragonal to cubic symmetry, detected as quenching temperature increases. SEM images show that the average grain size increases with increasing sintering temperature and time. Slightly higher bulk conductivity values have been observed for quenched samples sintered at high temperature. Bulk conductivity decreases with the lanthanide ion size. A slight conductivity enhancement, always limited by grain boundaries, is observed for longer sintering times. TDX measurements of the electrolyte/cathode mixtures also show a good stability of the electrolytes in the temperature range of 30-1100ºC.