6 resultados para stochastic discount factors
Resumo:
International fisheries agencies recommend exploitation paths that satisfy two features. First, for precautionary reasons exploitation paths should avoid high fishing mortality in those fisheries where the biomass is depleted to a degree that jeopardise the stock's capacity to produce the Maximum Sustainable Yield (MSY). Second, for economic and social reasons, captures should be as stable (smooth) as possible over time. In this article we show that a conflict between these two interests may occur when seeking for optimal exploitation paths using age structured bioeconomic approach. Our results show that this conflict be overtaken by using non constant discount factors that value future stocks considering their relative intertemporal scarcity.
Resumo:
To be published in: Revista Internacional de Sociología (2011), Special Issue on Experimental and Behavioral Economics.
Resumo:
The paper has two major contributions to the theory of repeated games. First, we build a supergame oligopoly model where firms compete in supply functions, we show how collusion sustainability is affected by the presence of a convex cost function, the magnitude of both the slope of demand market, and the number of rivals. Then, we compare the results with those of the traditional Cournot reversion under the same structural characteristics. We find how depending on the number of firms and the slope of the linear demand, collusion sustainability is easier under supply function than under Cournot competition. The conclusions of the models are simulated with data from the Spanish wholesale electricity market to predict lower bounds of the discount factors.
Resumo:
I consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called expected fair if for every link in the network both participants gain, marginally, and in discounted, expected terms, the same from it; and it is called a pairwise network formation procedure if the probability that a link is created (or eliminated) is positive if the discounted, expected gains to its two participants are positive too. The main result is the existence, for the discount factor small enough, of an expected fair and pairwise network formation procedure where the allocation rule is component balanced, meaning it distributes the total value of any maximal connected subnetwork among its participants. This existence result holds for all discount factors when the pairwise network formation procedure is restricted. I finally provide some comparison with previous models of farsighted network formation.
Resumo:
We consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called a forward-looking network formation scheme if, first, the probability that a link is created is positive if the discounted, expected gains to its two participants are positive, and if, second, the probability that a link is eliminated is positive if the discounted, expected gains to at least one of its two participants are positive. The main result is the existence, for all discount factors and all value functions, of a forward-looking network formation scheme. Furthermore, we can always nd a forward-looking network formation scheme such that (i) the allocation rule is component balanced and (ii) the transition probabilities increase in the di erence in payo s for the corresponding players responsible for the transition. We use this dynamic solution concept to explore the tension between e ciency and stability.
Resumo:
The purpose of this article is to characterize dynamic optimal harvesting trajectories that maximize discounted utility assuming an age-structured population model, in the same line as Tahvonen (2009). The main novelty of our study is that uses as an age-structured population model the standard stochastic cohort framework applied in Virtual Population Analysis for fish stock assessment. This allows us to compare optimal harvesting in a discounted economic context with standard reference points used by fisheries agencies for long term management plans (e.g. Fmsy). Our main findings are the following. First, optimal steady state is characterized and sufficient conditions that guarantees its existence and uniqueness for the general case of n cohorts are shown. It is also proved that the optimal steady state coincides with the traditional target Fmsy when the utility function to be maximized is the yield and the discount rate is zero. Second, an algorithm to calculate the optimal path that easily drives the resource to the steady state is developed. And third, the algorithm is applied to the Northern Stock of hake. Results show that management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal.