3 resultados para spatial patterns
Resumo:
Accurate and fast decoding of speech imagery from electroencephalographic (EEG) data could serve as a basis for a new generation of brain computer interfaces (BCIs), more portable and easier to use. However, decoding of speech imagery from EEG is a hard problem due to many factors. In this paper we focus on the analysis of the classification step of speech imagery decoding for a three-class vowel speech imagery recognition problem. We empirically show that different classification subtasks may require different classifiers for accurately decoding and obtain a classification accuracy that improves the best results previously published. We further investigate the relationship between the classifiers and different sets of features selected by the common spatial patterns method. Our results indicate that further improvement on BCIs based on speech imagery could be achieved by carefully selecting an appropriate combination of classifiers for the subtasks involved.
Resumo:
Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden. Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization. Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south-north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918-19, but different factors explained mortality variation in each wave. Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.
Resumo:
Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.